Câu hỏi:

19/03/2025 874 Lưu

Trên đoạn [1; 5], hàm số \(y = x + \frac{4}{x}\) đạt giá trị nhỏ nhất tại điểm

A. x = 5;

B. x = 2;

C. x = 1;

D. x = 4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(y' = 1 - \frac{4}{{{x^2}}} \Rightarrow y' = 0 \Leftrightarrow {x^2} = 4 \Rightarrow x = 2\) (vì x (1; 5)).

Khi đó y(1) = 5; y(2) = 4 và \(y\left( 5 \right) = \frac{{29}}{5}\).

Do đó \(\mathop {\min }\limits_{\left[ {1;5} \right]} y = 4\) tại x = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\];

B. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = \frac{{{e^5}}}{2}\];

C. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = {e^5}\];

D. Không tồn tại.

Lời giải

Đáp án đúng là: A

Ta có: f'(x) = (2x – 5)e2x; f'(x) = 0 \(x = \frac{5}{2}\).

Bảng biến thiên của hàm số:

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\).

Lời giải

Đáp án đúng là: B

Tập xác định: D = ℝ.

Có y' = 2xln2 – 4ln2; y' = 0 2xln2 – 4ln2 = 0 x = 2.

Cho hàm số y = 2x – 4xln2. Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] có dạng a – blnc. Tính a + b + c? (ảnh 1)

Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] bằng 4 – 8ln2 tại x = 2.

Khi đó: a + b + c = 4 + 8 + 2 = 14 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP