Câu hỏi:
19/03/2025 83Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét hàm số f(x) = x3 – 3x2 – 9x +10 trên đoạn [−2; 2] , ta có: f'(x) = 3x2 – 6x – 9.
Có f'(x) = 0 3x2 – 6x – 9 = 0 x = −1 [−2; 2] hoặc x = 3 [−2; 2]
Có f(−2) = 8; f(−1) = 15; f(2) = −12.
Suy ra \[\mathop {max}\limits_{\left[ { - 2;\,2} \right]\,} f\left( x \right) = f\left( { - 1} \right) = 15\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Tập xác định: D = ℝ.
Có y' = 2xln2 – 4ln2; y' = 0 2xln2 – 4ln2 = 0 x = 2.
Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] bằng 4 – 8ln2 tại x = 2.
Khi đó: a + b + c = 4 + 8 + 2 = 14 .
Lời giải
Đáp án đúng là: A
Ta có: y' = −2sin2x; y' = 0 sin2x = 0 \( \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\).
Vì x [0; π] \(x \in \left\{ {0;\frac{\pi }{2};\pi } \right\}\).
Do đó: y(0) = −2; \(y\left( {\frac{\pi }{2}} \right) = - 4;y\left( \pi \right) = - 2\).
Vậy \(\mathop {\min }\limits_{\left[ {0;\pi } \right]} y = - 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.