Câu hỏi:

19/03/2025 27

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{{x^2} - x + 1}}{{x - 1}}\) trên khoảng (1; +∞) là:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Hàm số xác định với ∀x ∈ (1; +∞).

Có \(f'\left( x \right) = \frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\); f'(x) = 0 x = 0 hoặc x = 2.

Bảng biến thiên

Giá trị nhỏ nhất của hàm số   f ( x ) = x 2 − x + 1 x − 1   trên khoảng (1; +∞) là: (ảnh 1)

Từ bảng biến thiên ta có: \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} f\left( x \right) = f\left( 2 \right) = 3\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số y = cos2x – 3 đạt giá trị nhỏ nhất trên đoạn [0; π] bằng:

Xem đáp án » 19/03/2025 50

Câu 2:

Cho hàm số y = 2x – 4xln2. Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] có dạng a – blnc. Tính a + b + c?

Xem đáp án » 19/03/2025 46

Câu 3:

Tìm giá trị nhỏ nhất của hàm số f(x) = (x − 3)e2x .

Xem đáp án » 19/03/2025 39

Câu 4:

Hàm số \(y = \sqrt {1 + x} + \sqrt {1 - x} \) có giá trị lớn nhất, giá trị nhỏ nhất lần lượt là:

Xem đáp án » 19/03/2025 37

Câu 5:

Tìm giá trị lớn nhất của hàm số \[y = f(x) = \frac{x}{{{x^2} + 1}}\] trên nửa khoảng (0; +∞).

Xem đáp án » 19/03/2025 31

Câu 6:

Hàm số y = (x – 1)2 + (x + 3)2 có giá trị nhỏ nhất bằng:

Xem đáp án » 19/03/2025 28