Câu hỏi:
19/03/2025 460Cho hàm số y = f(x) có đạo hàm của hàm số như sau: f'(x) = (x – 3)(x + 3)(x – 1)2. Gọi g(x) = f(−2x + 3). Khi đó giá trị nhỏ nhất của hàm số g(x) trên đoạn [0; 3] là:
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có bảng biến thiên của hàm số y = f(x)
Ta có: g'(x) = −2f'(−2x + 3).
Có g'(x) = 0 \( \Leftrightarrow \left[ \begin{array}{l} - 2x + 3 = - 3\\ - 2x + 3 = 1\\ - 2x + 3 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\\x = 0\end{array} \right.\)
Ta có x = 1 là nghiệm bội chẵn nên ta có bảng biến thiên của hàm số g(x).
Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số g(x) trên đoạn [0; 3] là g(0).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có −1 ≤ cos5x ≤ 1 −1 ≤ 2cos5x + 1 ≤ 3.
Đặt t = 2cos5x + 1 với x ∈ [−2; 3] thì t ∈ [−1; 3].
Khi đó, y = f(2cos5x + 1) = f(t) với t ∈ [−1; 3].
Suy ra: M = 5; m = 0 M – 2m = 5.
Lời giải
Đáp án đúng là: C
Đặt t = 1 – cosx t ∈ [0; 2].
Dựa vào đồ thị ta thấy \(\mathop {\max }\limits_{\left[ {0;2} \right]} f\left( t \right) = 2;\mathop {\min }\limits_{\left[ {0;2} \right]} f\left( t \right) = - \frac{3}{2} \Rightarrow M + n = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.