Câu hỏi:
19/03/2025 476Cho đồ thị hàm số y = f(x) như hình vẽ.
Gọi giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = |f(x)| trên đoạn [−1; 1] lần lượt là M, m. Tính giá trị của biểu thức T = 673M – 2019m.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vẽ đồ thị của hàm số y = |f(x)| bằng cách giữ nguyên phần đồ thị của hàm số y = f(x) ở phía trên trục hoành, lấy đối xứng phần đồ thị của hàm số y = f(x) ở phía đưới trục hoành qua trục hoành, xóa bỏ phần đồ thị phía dưới trục hoành.
Từ đó suy ra phần đồ thị của hàm số y = |f(x)| trên đoạn [−1; 1].
Dựa vào phần đồ thị đó, ta được M = 3; m = 0 nên T = 2019.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có −1 ≤ cos5x ≤ 1 −1 ≤ 2cos5x + 1 ≤ 3.
Đặt t = 2cos5x + 1 với x ∈ [−2; 3] thì t ∈ [−1; 3].
Khi đó, y = f(2cos5x + 1) = f(t) với t ∈ [−1; 3].
Suy ra: M = 5; m = 0 M – 2m = 5.
Lời giải
Đáp án đúng là: C
Đặt t = 1 – cosx t ∈ [0; 2].
Dựa vào đồ thị ta thấy \(\mathop {\max }\limits_{\left[ {0;2} \right]} f\left( t \right) = 2;\mathop {\min }\limits_{\left[ {0;2} \right]} f\left( t \right) = - \frac{3}{2} \Rightarrow M + n = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.