Câu hỏi:

19/03/2025 699

Cho hàm số y = f(x) liên tục trên [−2; 3] và có đồ thị như hình vẽ bên dưới. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(2cos5x + 1). Giá trị của M – 2m bằng bao nhiêu?

Cho hàm số y = f(x) liên tục trên [−2; 3] và có đồ thị như hình vẽ bên dưới. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(2cos5x + 1). Giá trị của M – 2m bằng bao nhiê (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có −1 ≤ cos5x ≤ 1 −1 ≤ 2cos5x + 1 ≤ 3.

Đặt t = 2cos5x + 1 với x ∈ [−2; 3] thì t ∈ [−1; 3].

Khi đó, y = f(2cos5x + 1) = f(t) với t ∈ [−1; 3].

Suy ra: M = 5; m = 0 M – 2m = 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Đặt \(t = \sqrt {2x - {x^2}} \), ta có \(0 \le t \le 1\).

Hàm số \(y = \sqrt {2x - {x^2}} \) trở thành y = f(t) với 0 ≤ t ≤ 1.

Dựa vào đồ thị ta suy ra M = −3; m = −5.

Vậy 2M – m = −1.

Lời giải

Đáp án đúng là: C

Đặt t = 1 – cosx t ∈ [0; 2].

Dựa vào đồ thị ta thấy \(\mathop {\max }\limits_{\left[ {0;2} \right]} f\left( t \right) = 2;\mathop {\min }\limits_{\left[ {0;2} \right]} f\left( t \right) = - \frac{3}{2} \Rightarrow M + n = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP