Câu hỏi trong đề: 12 bài tập Nhận dạng đồ thị hàm số số có lời giải !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có đồ thị hàm số có tiệm cận đứng x = 1, nên loại A, B.
Đồ thị hàm số có tiệm cận ngang y = 1 nên chọn D.
Vì \[\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\frac{{x + 1}}{{x - 1}}} \right) = - \infty \] và \[\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{{x + 1}}{{x - 1}}} \right) = + \infty \].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Dựa vào đồ thị ta có a > 0, đồ thị cắt Oy tại 1 điểm có tung độ dương nên d > 0, đồ thị có 2 cực trị trái dấu nên \({x_1}.{x_2} < 0 \Rightarrow \frac{c}{a} < 0 \Rightarrow c < 0\).
Lời giải
Đáp án đúng là: B
Ta thấy đồ thị hàm số cắt trục tung tại điểm (0; −1) và có tiệm cận đứng là đường thẳng x = 1, tiệm cận xiên là đường thẳng y = x.
Vì đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1 nên loại đáp án C và D.
Vì đồ thị hàm số cắt trục tung tại điểm (0; −1) nên ta loại đáp án A.
Vậy đường cong trên là đồ thị của hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.