Câu hỏi:

13/04/2025 434

Với thiết kế độc đáo, cổng trường Đại học Bách Khoa Hà Nội được xây dựng cách đây khoảng 50 năm và đã từng là niềm tự hào của tri thức thế hệ mới. Chiếc cổng có chiều cao \(7,6\;{\rm{m}}\) và khoảng cách giữa hai chân cổng là \({\rm{AB}} = 9\;{\rm{m}}\). Một bạn sinh viên đứng cách chân cổng một đoạn \({\rm{AE}} = 0,5\;{\rm{m}}\) thì đỉnh đầu bạn ấy vừa chạm vào cổng. Hỏi bạn đó cao bao nhiêu.
Hỏi bạn đó cao bao nhiêu. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Phương trình parabol của cổng trường có dạng: \((P):y = a{x^2}(a < 0)\).
\({\rm{OA}} = \frac{{{\rm{AB}}}}{2} = \frac{9}{2} = 4,5\;{\rm{m}};{\rm{OE}} = {\rm{OA}} - {\rm{AE}} = 4,5 - 0,5 = 4\;{\rm{m}}\). Vì \({\rm{OS}} = 7,6\;{\rm{m}} \Rightarrow {\rm{A}}(4,5; - 7,6)\).
\({\rm{A}}(4,5; - 7,6) \in (P):y = a{x^2} \Rightarrow - 7,6 = a \cdot {(4,5)^2} \Rightarrow a = \frac{{ - 7,6}}{{4,{5^2}}} = - \frac{{152}}{{405}}\)
Vậy \((P):y = - \frac{{152}}{{405}}{x^2}\)
Thay \(x = 4\) vào \((P):y = - \frac{{152}}{{405}}{x^2}\), ta có: \(y = - \frac{{152}}{{405}}{4^2} \approx - 6\)
\( \Rightarrow {\rm{HM}} = 6\;{\rm{m}} \Rightarrow {\rm{ME}} = {\rm{HE}} - {\rm{HM}} = 7,6 - 6 = 1,6\;{\rm{m}}\)
Vậy bạn sinh viên đó cao \(1,6\;{\rm{m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi Đường đi của quả banh là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
\({\rm{B}}( - 3; - 9) \in (P):y = a{x^2} \Rightarrow - 9 = a \cdot {( - 3)^2} \Rightarrow a = - 1\)
\((P):y = - {x^2}\)
Khi banh đạt độ cao 5 m thì \({\rm{ME}} = {\rm{HE}} - {\rm{HM}} = 9 - 5 = 4\;{\rm{m}}\)
\( \Rightarrow {\rm{M}}\left( {{x_M}; - 4} \right) \in (P):y = - {x^2} \Rightarrow - 4 = - x_{\rm{M}}^2 \Rightarrow x_{\rm{M}}^2 = 4 \Rightarrow {x_{\rm{M}}} = - \sqrt 4 = - 2\)
Vậy sau 1 giây kể từ khi bóng được đá lên thì đạt độ cao 5 m.

Lời giải

Quỹ đạo máy bay là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
Sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi xuống đất nên khi \(y = - 18\) thì \(x = 6\).
Khi đó \( - 18 = a{.6^2} \Rightarrow a = \frac{{ - 18}}{{36}} = \frac{{ - 1}}{2}\).
Vậy hàm số biểu thị quỹ đạo của máy bay đồ chơi là: \((P):y = - \frac{1}{2}{x^2}\).
Thay \(x = 3\) vào \((P):y = - \frac{1}{2}{x^2} \Rightarrow y = - \frac{1}{2} \cdot {3^2} = - 4,5\)
\( \Rightarrow {\rm{MB}} = 4,5\;{\rm{m}} \Rightarrow {\rm{MH}} = {\rm{BH}} - {\rm{MB}} = 18 - 4,5 = 13,5\;{\rm{m}}\)
Vậy sau 3 giây thì máy bay cách mặt đất \(13,5\;{\rm{m}}\).