Câu hỏi:

13/04/2025 113

Giả sử Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m, điểm cao nhất trên cổng cách mặt đất 185,6m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất). Hỏi vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn bao nhiêu mét? (làm tròn đến cm )
Hỏi vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn bao nhiêu mét? (làm tròn đến cm ) (ảnh 1) Hỏi vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn bao nhiêu mét? (làm tròn đến cm ) (ảnh 2)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cái cổng có hình dạng là một parabol có phương trình dạng: \((P):y = a{x^2}(a < 0)\).
\({\rm{OA}} = \frac{{{\rm{AB}}}}{2} = \frac{{162}}{2} = 81\;{\rm{m}}\) \( \Rightarrow {\rm{A}}(81; - 185,6) \in (P):y = a{x^2} \Rightarrow - 185,6 = a{.81^2} \Rightarrow a = \frac{{ - 185,6}}{{{{81}^2}}} = \frac{{ - 185}}{{6561}}\)
\((P):y = \frac{{ - 185}}{{6561}}{x^2}\)
\({\rm{HM}} = {\rm{EH}} - {\rm{ME}} = 185,6 - 43 = 142,6\;{\rm{m}}\)
\( \Rightarrow {\rm{M}}\left( {{x_{\rm{M}}}; - 142,6} \right) \in (P):y = \frac{{ - 185}}{{6561}}{x^2} \Rightarrow - 142,6 = \frac{{ - 185}}{{6561}}x_{\rm{M}}^2\)
\( \Rightarrow {x_{\rm{M}}}^2 = \frac{{ - 142,6.6561}}{{ - 185}} = \frac{{4677993}}{{925}} \Rightarrow {x_{\rm{M}}} = \sqrt {\frac{{4677993}}{{925}}} \approx 71,11\;{\rm{m}}\)
\( \Rightarrow {\rm{OE}} = 71,11\;{\rm{m}} \Rightarrow {\rm{EA}} = {\rm{OA}} - {\rm{OE}} = 81 - 71,11 = 9,89\;{\rm{m}}.\)
Vậy vị trí chạm đất của đầu sợi dây này cách chân cổng \(A\) một khoảng là \(9,89\;{\rm{m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi Đường đi của quả banh là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
\({\rm{B}}( - 3; - 9) \in (P):y = a{x^2} \Rightarrow - 9 = a \cdot {( - 3)^2} \Rightarrow a = - 1\)
\((P):y = - {x^2}\)
Khi banh đạt độ cao 5 m thì \({\rm{ME}} = {\rm{HE}} - {\rm{HM}} = 9 - 5 = 4\;{\rm{m}}\)
\( \Rightarrow {\rm{M}}\left( {{x_M}; - 4} \right) \in (P):y = - {x^2} \Rightarrow - 4 = - x_{\rm{M}}^2 \Rightarrow x_{\rm{M}}^2 = 4 \Rightarrow {x_{\rm{M}}} = - \sqrt 4 = - 2\)
Vậy sau 1 giây kể từ khi bóng được đá lên thì đạt độ cao 5 m.

Lời giải

Quỹ đạo máy bay là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
Sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi xuống đất nên khi \(y = - 18\) thì \(x = 6\).
Khi đó \( - 18 = a{.6^2} \Rightarrow a = \frac{{ - 18}}{{36}} = \frac{{ - 1}}{2}\).
Vậy hàm số biểu thị quỹ đạo của máy bay đồ chơi là: \((P):y = - \frac{1}{2}{x^2}\).
Thay \(x = 3\) vào \((P):y = - \frac{1}{2}{x^2} \Rightarrow y = - \frac{1}{2} \cdot {3^2} = - 4,5\)
\( \Rightarrow {\rm{MB}} = 4,5\;{\rm{m}} \Rightarrow {\rm{MH}} = {\rm{BH}} - {\rm{MB}} = 18 - 4,5 = 13,5\;{\rm{m}}\)
Vậy sau 3 giây thì máy bay cách mặt đất \(13,5\;{\rm{m}}\).