Câu hỏi:

13/04/2025 224

Khoảng cách giữa hai thành phố A và B là 144 km. Một ô tô khởi hành từ thành phố A đến thành phố B với vận tốc không đổi trên cả quãng đường. Sau khi ô tô thứ nhất đi được 20 phút, ô tô thứ hai cũng đi từ thành phố A đến thành phố B với vận tốc lớn hơn vận tốc ô tô thứ nhất là 6km/h (vận tốc không đổi trên cả quãng đường). Biết rằng cả hai ô tô đến thành phố B cùng một lúc.
1. Tính vận tốc của hai xe ô tô
2. Nếu trên đường đó có biển báo cho phép xe chạy với vận tốc tối đa là 50km/h thì hai xe ô tô trên, xe nào vi phạm về giới hạn tốc độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
a) Gọi vận tốc của xe ô tô thứ nhất là \(x\) (km/h), \(x > 0\).
Vì ô tô thứ hai đi với vận tốc lớn hơn vận tốc của ô tô thứ nhất là 6km/h nên vận tốc của ô tô thứ hai là \[x + 6\] (km/h)
Khi đó, thời gian xe ô tô thứ nhất đi hết quãng đường AB là: \[\frac{{144}}{x}\] (giờ)
Thời gian xe ô tô thứ hai đi hết quãng đường AB là: \[\frac{{144}}{{x + 6}}\] (giờ)
Do ô tô thứ hai xuất phát sau ô tô thứ nhất 20 phút (tức là \[\frac{1}{3}\] giờ) mà hai xe lại đến B cùng một lúc nên ta có phương trình:
\[\frac{{144}}{x} - \frac{{144}}{{x + 6}} = \frac{1}{3}\] \[ \Leftrightarrow \frac{{144(x + 6) - 144x}}{{x(x + 6)}} = \frac{1}{3}\]
\[ \Leftrightarrow \frac{{864}}{{{x^2} + 6x}} = \frac{1}{3}\] \[ \Leftrightarrow {x^2} + 6x = 2592\] \[ \Leftrightarrow {x^2} + 6x - 2592 = 0\] (1)
Ta có: \[\Delta ' = {\rm{ }}{3^2}--{\rm{ }}1.\left( { - 2592} \right) = 9 + 2592 = 2601 > 0 \Rightarrow \sqrt {\Delta '} = 51\].
Phương trình (1) có hai nghiệm phân biệt:
\[{x_1} = 48\] (thỏa mãn điều kiện); \[{x_2} = - 54\](không thỏa mãn)
Vậy vận tốc của xe ô tô thứ nhất là 48km/h
Vậy vận tốc của xe ô tô thứ hai là 48 + 6 = 54 km/h
b) Do vận tốc tối đa cho phép trên quãng đường từ A đến B là 50km/h nên xe ô tô thứ hai đã vi phạm giới hạn về tốc độ (do \[{v_2} = 54 > 50\])

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi Đường đi của quả banh là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
\({\rm{B}}( - 3; - 9) \in (P):y = a{x^2} \Rightarrow - 9 = a \cdot {( - 3)^2} \Rightarrow a = - 1\)
\((P):y = - {x^2}\)
Khi banh đạt độ cao 5 m thì \({\rm{ME}} = {\rm{HE}} - {\rm{HM}} = 9 - 5 = 4\;{\rm{m}}\)
\( \Rightarrow {\rm{M}}\left( {{x_M}; - 4} \right) \in (P):y = - {x^2} \Rightarrow - 4 = - x_{\rm{M}}^2 \Rightarrow x_{\rm{M}}^2 = 4 \Rightarrow {x_{\rm{M}}} = - \sqrt 4 = - 2\)
Vậy sau 1 giây kể từ khi bóng được đá lên thì đạt độ cao 5 m.

Lời giải

Quỹ đạo máy bay là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
Sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi xuống đất nên khi \(y = - 18\) thì \(x = 6\).
Khi đó \( - 18 = a{.6^2} \Rightarrow a = \frac{{ - 18}}{{36}} = \frac{{ - 1}}{2}\).
Vậy hàm số biểu thị quỹ đạo của máy bay đồ chơi là: \((P):y = - \frac{1}{2}{x^2}\).
Thay \(x = 3\) vào \((P):y = - \frac{1}{2}{x^2} \Rightarrow y = - \frac{1}{2} \cdot {3^2} = - 4,5\)
\( \Rightarrow {\rm{MB}} = 4,5\;{\rm{m}} \Rightarrow {\rm{MH}} = {\rm{BH}} - {\rm{MB}} = 18 - 4,5 = 13,5\;{\rm{m}}\)
Vậy sau 3 giây thì máy bay cách mặt đất \(13,5\;{\rm{m}}\).
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay