Câu hỏi:

05/06/2025 160

Từ một vị trí ban đầu trong không gian, vệ tinh \(X\) chuyển động theo quỹ đạo là một đường tròn quanh Trái Đất và luôn cách tâm Trái Đất một khoảng bằng \(9200\;\,{\rm{km}}\). Sau 2 giờ thì vệ tinh \(X\) hoàn thành hết một vòng di chuyển.

a) Quãng đường vệ tinh \(X\) chuyển động được sau 1 giờ là: \[ \approx 28902,65\,\,{\rm{(km)}}{\rm{. }}\]

b) Quãng đường vệ tinh \(X\) chuyển động được sau 1,5 giờ là: \( \approx 43353,98\,\,{\rm{(km)}}\).

c) Sau khoảng 5,3 giờ thì \(X\) di chuyển được quãng đường \(240000\;\,{\rm{km}}\).

d) Giả sử vệ tinh di chuyển theo chiều dương của đường tròn, sau 4,5 giờ thì vệ tinh vẽ nên một góc \(\frac{{9\pi }}{2}\)rad?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Một vòng di chuyển của \(X\) chính là chu vi đường tròn:

\(C = 2\pi R = 2\pi .9200 = 18400\pi \,\,{\rm{(km)}}{\rm{. }}\)

Sau 1 giờ, vệ tinh di chuyển nửa đường tròn với quãng đường là:

\(\frac{1}{2}C = 9200\pi \approx 28902,65\,\,{\rm{(km)}}{\rm{. }}\)

b) Sau 1,5 giờ, vệ tinh di chuyển được \(\frac{{1,5.1}}{2}\) đường tròn (hay \(\frac{3}{4}\) đường tròn), quãng đường là:

\(\frac{3}{4}C = \frac{3}{4} \cdot 18400\pi = 13800\pi  \approx 43353,98\,\,{\rm{(km)}}\).

c) Số giờ để vệ tinh \(X\) thực hiện quãng đường \(240000\;\,\,{\rm{km}}\) là: \(\frac{{240000}}{{9200\pi }} \approx 8,3\) (giờ).

d) Sau 4,5 giờ thì số vòng tròn mà vệ tinh \(X\) di chuyển được là: \(\frac{{4,5}}{2} = \frac{9}{4}\) (vòng).

Số đo góc lượng giác thu được là: \(\frac{9}{4} \cdot 2\pi = \frac{{9\pi }}{2}\,\,{\rm{(rad)}}\).

Đáp án:       a) Đúng,      b) Đúng,      c) Sai,                    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có \(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x;\) \(\sin \left( {10\pi  + x} \right) = \sin x.\)

Và \(\cos \left( {\frac{{3\pi }}{2} - x} \right) = \cos \left( {2\pi  - \frac{\pi }{2} - x} \right) = \cos \left( {\frac{\pi }{2} + x} \right) =  - {\mkern 1mu} \sin x;\) \(\cos \left( {8\pi  - x} \right) = \cos x.\)

Khi đó \({\left[ {\sin \left( {\frac{\pi }{2} - x} \right) + \sin \left( {10\pi  + x} \right)} \right]^{{\kern 1pt} 2}} + {\left[ {\cos \left( {\frac{{3\pi }}{2} - x} \right) + \cos \left( {8\pi  - x} \right)} \right]^{{\kern 1pt} 2}}\)

\( = {\left( {\cos x + \sin x} \right)^2} + {\left( {\cos x - \sin x} \right)^2}\)

\( = {\cos ^2}x + 2.\sin x.\cos x + {\sin ^2}x + {\cos ^2}x - 2.\sin x.\cos x + {\sin ^2}x = 2.\)

Câu 2

Lời giải

Đáp án đúng là: B

Cách 1. Ta có \(\delta  - \alpha  = 4\pi \,\, \Rightarrow \) hai cung \(\alpha \) và \(\delta \) có điểm cuối trùng nhau.

Và \(\gamma  - \beta  = 8\pi \,\, \Rightarrow \) hai cung \(\beta \) và \(\gamma \) có điểm cuối trùng nhau.

Cách 2. Gọi \(A,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} B,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} C,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} D\) là điểm cuối của các cung \(\alpha ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \gamma ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \delta \)

Biểu diễn các cung trên đường tròn lượng giác ta có \(B \equiv C,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} A \equiv D.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP