Câu hỏi:
05/06/2025 18Hai điểm sáng M và N cùng dao động điều hòa trên trục Ox với phương trình lần lượt là
\({x_M} = 4\cos \left( {\frac{{5\pi }}{3}t + \frac{{2\pi }}{3}} \right)\,\,{\rm{cm}}\) và \({x_N} = 4\cos \left( {\frac{{5\pi }}{3}t + \frac{\pi }{3}} \right)\,\,{\rm{cm}}\).
a) Biên độ dao động tổng hợp của hai điểm sáng M và N là \(4\sqrt 2 .\)
b) Khoảng cách của M và N dao động với phương trình là \(4\sqrt 3 \cos \left( {\frac{{5\pi }}{3}t + \pi } \right)\).
c) Khoảng cách lớn nhất của M và N trong quá trình chúng dao động là \(4.\)
d) Kể từ \(t = 0\), thời điểm M và N gặp nhau lần thứ 2025 là \(1211,8\)s.
Quảng cáo
Trả lời:
Dao động tổng hợp là \(x = {x_M} + {x_N} = 4\cos \left( {\frac{{5\pi }}{3}t + \frac{{2\pi }}{3}} \right) + 4\cos \left( {\frac{{5\pi }}{3}t + \frac{\pi }{3}} \right) = 4\sqrt 3 \cos \left( {\frac{{5\pi }}{3}t + \frac{\pi }{2}} \right)\)
Biên độ dao động tổng hợp của hai điểm sáng M và N là \(4\sqrt 3 .\)
Khoảng cách của M và N trong quá trình chúng dao động là
\(d = 4\cos \left( {\frac{{5\pi }}{3}t + \frac{{2\pi }}{3}} \right) - 4\cos \left( {\frac{{5\pi }}{3}t + \frac{\pi }{3}} \right) = - 4\sin \left( {\frac{{5\pi }}{3}t + \frac{\pi }{2}} \right) = 4\cos \left( {\frac{{5\pi }}{3}t + \pi } \right)\)
Khoảng cách lớn nhất của M và N trong quá trình chúng dao động là \(4.\)
Để M, N gặp nhau khi \(d = 0\).
Trong 1 chu kì, M và N gặp nhau 2 lần.
Trong 2012 chu kì đầu, 2 vật gặp nhau 2024 lần
Thời gian lần cuối hai vật gặp nhau là \(\frac{T}{4}\). Vì ta có hình bên:
Vậy sau \(2012T + \frac{T}{4} = 2012,25.\frac{6}{5} = 1214,7\) (s)
Đáp án: a) Sai, b) Sai, c) Đúng, d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi \(t = 5\), ta có: \(h\left( 5 \right) = 75\sin \left( {\frac{{\pi \cdot 5}}{8}} \right) \approx 69,3\,\,{\rm{(cm)}}\).
Khi \(t = 20\), ta có: \(h\left( {20} \right) = 75\sin \left( {\frac{{\pi \cdot 20}}{8}} \right) = 75\,\,{\rm{(cm)}}\).
Ta có \(\sin \left( {\frac{{\pi t}}{8}} \right) \le 1 \Rightarrow 75\sin \left( {\frac{{\pi t}}{8}} \right) \le 75\) hay \(h\left( t \right) \le 75\).
Giá trị lớn nhất của \(h\left( t \right)\) là 75, khi đó \(\sin \left( {\frac{{\pi t}}{8}} \right) = 1 \Rightarrow \frac{{\pi t}}{8} = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) \( \Rightarrow t = 4 + 16k\left( {k \in \mathbb{Z}} \right)\).
Vì \(t \in \left[ {0\,;30} \right] \Rightarrow t \in \left\{ {4\,;20} \right\}\) (ứng với \(k\) bằng 0 và 1).
Vậy tại các thời điểm 4 giây hoặc 20 giây (trong 30 giây đầu tiên) thì cơn sóng đạt chiều cao cực đại (là \(75\;\,{\rm{cm}}\)).
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.
Lời giải
Ta có \(f\left( {\frac{\pi }{8}} \right) = \tan \frac{\pi }{4} - 1 = 0\).
Điều kiện xác định: \(2x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z} \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2},\,k \in \mathbb{Z}\).
Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}|k \in \mathbb{Z}} \right\}\) và tập giá trị của hàm số là \[\mathbb{R}.\]
Ta có \(f\left( { - x} \right) = \tan \left( { - 2x} \right) - 1 = - \tan 2x - 1\) nên hàm số \(f\left( x \right)\) không chẵn không lẻ.
Ta có \(f\left( {x + \pi } \right) = \tan \left( {2x + \pi } \right) - 1 = \tan 2x - 1 = f\left( x \right)\).
Vậy hàm số \(f\left( x \right)\) là hàm tuần hoàn với chu kì \(\pi \).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận