Câu hỏi:

05/06/2025 65 Lưu

Tập nghiệm của phương trình \[\sin 2x = \sin x\] là

A. \[S = \left\{ {k2{\rm{\pi }};\frac{{\rm{\pi }}}{3} + k2{\rm{\pi }}\left| {k \in \mathbb{Z}} \right.} \right\}\].                        
B. \[S = \left\{ {k2{\rm{\pi }};\frac{{\rm{\pi }}}{3} + \frac{{k2{\rm{\pi }}}}{3}\left| {k \in \mathbb{Z}} \right.} \right\}\].
C. \[S = \left\{ {k2{\rm{\pi }}; - \frac{{\rm{\pi }}}{3} + k2{\rm{\pi }}\left| {k \in \mathbb{Z}} \right.} \right\}\].                        
D. \[S = \left\{ {k2{\rm{\pi }};{\rm{\pi }} + k2{\rm{\pi }}\left| {k \in \mathbb{Z}} \right.} \right\}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có \[\sin 2x = \sin x\]\[ \Leftrightarrow \left[ \begin{array}{l}2x = x + k2{\rm{\pi }}\\2x = {\rm{\pi }} - x + k2{\rm{\pi }}\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x = k2{\rm{\pi }}\\x = \frac{{\rm{\pi }}}{3} + \frac{{k2{\rm{\pi }}}}{3}\end{array} \right.\] \[\left( {k \in \mathbb{Z}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hạ bậc hai vế, ta được phương trình \(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2}\).

Ta có\(\cos \left( {2x + \pi } \right) = - \cos 2x\) (Áp dụng giá trị lượng giác của 2 cung hơn kém \(\pi \)).

\(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2} \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = \cos \left( {2x + \pi } \right) \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = - \cos \left( {2x} \right)\).

\[ \Leftrightarrow \cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x \Leftrightarrow \left[ \begin{array}{l}4x + \frac{\pi }{2} = 2x + k2\pi \\4x + \frac{\pi }{2} = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{{12}} + k\frac{\pi }{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\].

Đáp án:           a) Sai,             b) Đúng,         c) Đúng,          d) Sai.

Câu 2

A. \[x =  \pm \frac{\pi }{{15}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].   
B. \[x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\].                          
C. \[x = \frac{{ - \pi }}{{45}} + \frac{{k2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\].   
D. \[x = \frac{\pi }{{45}} + \frac{{k2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\].

Lời giải

Đáp án đúng là: B

\(\cos 3x = \cos 12^\circ \)\( \Leftrightarrow \cos 3x = \cos \frac{\pi }{{15}}\)

\( \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

Câu 4

A. \[x = \frac{\pi }{6} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\].                                                                
B. \[x = \frac{\pi }{3} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\].                          
C. \[x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].                                                                
D. Vô nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).                                                                
B. \(x = \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).                          
C. \(x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).                                                               
D. \(x = \frac{{k\pi }}{2}\,\,\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP