Câu hỏi:

05/06/2025 10

Số nghiệm của phương trình \({\rm{sin}}\left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn \(\left[ {0;\pi } \right]\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Đặt \(x + \frac{\pi }{4} = \alpha \). Khi đó ta có phương trình \({\rm{sin}}\alpha  = \frac{{\sqrt 2 }}{2}\).

b (ảnh 1)

Xét đường thẳng \({\rm{y}} = \frac{{\sqrt 2 }}{2}\) và đồ thị hàm số \(y = \sin a\) trên đoạn \(\left[ {0;\pi } \right]\):

Từ đồ thị hàm số trên ta thấy đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) cắt đồ thị số \(y = \sin a\) trên đoạn \(\left[ {0;\,\,\pi } \right]\) tại hai điểm có hoành độ lần lượt là \({\alpha _1} = \frac{\pi }{4}\) và \({\alpha _2} = \frac{{3\pi }}{4}\).

Mà \(x + \frac{\pi }{4} = \alpha \), khi đó ta sẽ tìm được 2 giá trị \(x\) là \({x_1} = 0\) và \({x_2} = \frac{\pi }{2}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình hoành độ giao điểm của hai đồ thị hàm số:

\[\begin{array}{l}\sin \left( {x - \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{2} - x} \right) \Leftrightarrow \sin \left( {x - \frac{\pi }{4}} \right) = \sin x \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{4} = x + k2\pi }\\{x - \frac{\pi }{4} = \pi  - x + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.\\ \Leftrightarrow 2x = \frac{{5\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = \frac{{5\pi }}{8} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\end{array}\]

Vì \[x \in \left[ {0\,;2\pi } \right] \Rightarrow x \in \left\{ {\frac{{5\pi }}{8};\frac{{13\pi }}{8}} \right\}\].

Với \[x = \frac{{5\pi }}{8} \Rightarrow y = \sin \frac{{5\pi }}{8} \Rightarrow A\left( {\frac{{5\pi }}{8};\sin \frac{{5\pi }}{8}} \right)\],

với \[x = \frac{{13\pi }}{8} \Rightarrow y = \sin \frac{{13\pi }}{8} \Rightarrow B\left( {\frac{{13\pi }}{8};\sin \frac{{13\pi }}{8}} \right)\],

với \[x = \frac{{21\pi }}{8} \Rightarrow y = \sin \frac{{21\pi }}{8} \Rightarrow C\left( {\frac{{21\pi }}{8};\sin \frac{{21\pi }}{8}} \right)\].

 Vì \[I\]là trung điểm của \[AC\]

\[ \Rightarrow I\left( {\frac{{13\pi }}{{16}};\frac{{\sin \left( {\frac{{5\pi }}{8}} \right) + \sin \left( {\frac{{21\pi }}{8}} \right)}}{2}} \right) = \left( {\frac{{13\pi }}{{16}};\frac{{2.\sin \left( {\frac{{13\pi }}{4}} \right).\cos \left( { - 2\pi } \right)}}{2}} \right) = \left( {\frac{{13\pi }}{{16}};\sin \left( {\frac{{13\pi }}{4}} \right)} \right)\].

Đáp án:           a) Đúng,          b) Sai,             c) Đúng,          d) Đúng.

Lời giải

Ta có: \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)

xπ12=π3+k2πxπ12=ππ3+k2πx=π4+k2πx=17π12+k2πk

Vậy phương trình có nghiệm là: \[x = - \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{17\pi }}{{12}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).

Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.

Đáp án:           a) Sai,             b) Sai,             c) Đúng,          d) Đúng.

Câu 5

Phương trình lượng giác \(\cos 3x = \cos 12^\circ \) có nghiệm là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay