Câu hỏi:
05/06/2025 28
Một cái cổng vào một trung tâm thương mại có hình dạng là một phần của đồ thị hàm số \(y = 2\cos \left( {\frac{x}{2}} \right) + 2\). Gọi \(A,B\) là hai điểm nằm trên cổng (trên đồ thị hàm số \(y = 2\cos \left( {\frac{x}{2}} \right) + 2\)) và \(C,D\) là hai điểm nằm trên mặt nền của cổng sao cho \(ABCD\) là hình chữ nhật. Người quản lí trung tâm thương mại muốn lắp một cái cửa kính tự động vào hình chữ nhật \(ABCD\). Tính diện tích của cái cửa cần lắp biết chiều cao của cái cửa là \(AD = 3\) mét (kết quả làm tròn đến một chữ số thập phân theo đơn vị mét vuông, lấy \(\pi = 3,14\)).
Một cái cổng vào một trung tâm thương mại có hình dạng là một phần của đồ thị hàm số \(y = 2\cos \left( {\frac{x}{2}} \right) + 2\). Gọi \(A,B\) là hai điểm nằm trên cổng (trên đồ thị hàm số \(y = 2\cos \left( {\frac{x}{2}} \right) + 2\)) và \(C,D\) là hai điểm nằm trên mặt nền của cổng sao cho \(ABCD\) là hình chữ nhật. Người quản lí trung tâm thương mại muốn lắp một cái cửa kính tự động vào hình chữ nhật \(ABCD\). Tính diện tích của cái cửa cần lắp biết chiều cao của cái cửa là \(AD = 3\) mét (kết quả làm tròn đến một chữ số thập phân theo đơn vị mét vuông, lấy \(\pi = 3,14\)).
Quảng cáo
Trả lời:
Chọn hệ trục tọa độ như hình vẽ:
\[AD = 3 \Leftrightarrow 2\cos \frac{x}{2} + 2 = 3 \Leftrightarrow \cos \frac{x}{2} = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k4\pi \\x = \frac{{ - 2\pi }}{3} + k4\pi \end{array} \right.(k \in \mathbb{Z})\]
Chọn \[A\left( {\frac{{ - 2\pi }}{3};3} \right);B\left( {\frac{{2\pi }}{3};3} \right);C\left( {\frac{{2\pi }}{3};0} \right);D\left( {\frac{{ - 2\pi }}{3};0} \right)\].
Khi đó, \[AB = \frac{{4\pi }}{3};AD = 3 \Rightarrow {S_{ABCD}} = 4\pi \,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}} \approx {\rm{12,6}}\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\].
Đáp án: \(12,6\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị hàm số:
\[\begin{array}{l}\sin \left( {x - \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{2} - x} \right) \Leftrightarrow \sin \left( {x - \frac{\pi }{4}} \right) = \sin x \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{4} = x + k2\pi }\\{x - \frac{\pi }{4} = \pi - x + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.\\ \Leftrightarrow 2x = \frac{{5\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = \frac{{5\pi }}{8} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\end{array}\]
Vì \[x \in \left[ {0\,;2\pi } \right] \Rightarrow x \in \left\{ {\frac{{5\pi }}{8};\frac{{13\pi }}{8}} \right\}\].
Với \[x = \frac{{5\pi }}{8} \Rightarrow y = \sin \frac{{5\pi }}{8} \Rightarrow A\left( {\frac{{5\pi }}{8};\sin \frac{{5\pi }}{8}} \right)\],
với \[x = \frac{{13\pi }}{8} \Rightarrow y = \sin \frac{{13\pi }}{8} \Rightarrow B\left( {\frac{{13\pi }}{8};\sin \frac{{13\pi }}{8}} \right)\],
với \[x = \frac{{21\pi }}{8} \Rightarrow y = \sin \frac{{21\pi }}{8} \Rightarrow C\left( {\frac{{21\pi }}{8};\sin \frac{{21\pi }}{8}} \right)\].
Vì \[I\]là trung điểm của \[AC\]
\[ \Rightarrow I\left( {\frac{{13\pi }}{{16}};\frac{{\sin \left( {\frac{{5\pi }}{8}} \right) + \sin \left( {\frac{{21\pi }}{8}} \right)}}{2}} \right) = \left( {\frac{{13\pi }}{{16}};\frac{{2.\sin \left( {\frac{{13\pi }}{4}} \right).\cos \left( { - 2\pi } \right)}}{2}} \right) = \left( {\frac{{13\pi }}{{16}};\sin \left( {\frac{{13\pi }}{4}} \right)} \right)\].
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Đúng.
Lời giải
Hạ bậc hai vế, ta được phương trình \(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2}\).
Ta có\(\cos \left( {2x + \pi } \right) = - \cos 2x\) (Áp dụng giá trị lượng giác của 2 cung hơn kém \(\pi \)).
\(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2} \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = \cos \left( {2x + \pi } \right) \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = - \cos \left( {2x} \right)\).
\[ \Leftrightarrow \cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x \Leftrightarrow \left[ \begin{array}{l}4x + \frac{\pi }{2} = 2x + k2\pi \\4x + \frac{\pi }{2} = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{{12}} + k\frac{\pi }{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\].
Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.