Câu hỏi:

14/06/2025 35

Cho\[\sin \alpha = \frac{1}{{\sqrt 3 }}\] với\(0 < \alpha < \frac{\pi }{2}\). Tính giá trị của\[\sin \left( {\alpha + \frac{\pi }{3}} \right)\]     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

D

Ta có\[\sin \alpha  = \frac{1}{{\sqrt 3 }}\], \[{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - \frac{1}{3} = \frac{2}{3}\].

Vì \(0 < \alpha  < \frac{\pi }{2}\)nên \[\cos \alpha  > 0 \Rightarrow \cos \alpha  = \sqrt {\frac{2}{3}} \]

\[ \Rightarrow \sin \left( {\alpha  + \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} + \cos \alpha \sin \frac{\pi }{3} = \frac{1}{{\sqrt 3 }}.\frac{1}{2} + \sqrt {\frac{2}{3}} .\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{6} + \frac{{\sqrt 2 }}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\begin{array}{l}\cos x\cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right) = \frac{1}{2}\cos x\left( {\cos \frac{{2\pi }}{3} + \cos 2x} \right)\\ = \frac{1}{2}\cos x\cos 2x - \frac{1}{4}\cos x = \frac{1}{4}(\cos 3x + \cos x) - \frac{1}{4}\cos x = \frac{1}{4}\cos 3x\end{array}\)

Trả lời: 0,25

Câu 2

Rút gọn biểu thức M = cos2x.cosx + sin2x.sinx ta được kết quả là     

Lời giải

A

Ta có M = cos2x.cosx + sin2x.sinx  = cos(2x – x) = cosx.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP