Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\). Các mệnh đề sau đúng hay sai?
Hàm số đồng biến trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\), nghịch biến trên \(\left( { - 1;1} \right)\).
Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\). Các mệnh đề sau đúng hay sai?
Quảng cáo
Trả lời:
Câu hỏi cùng đoạn
Câu 2:
Hàm số đồng biến trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Lời giải của GV VietJack
Tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có \(y' = \frac{1}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Bảng biến thiên

Vậy hàm số đã cho đồng biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\). Chọn Đ
Câu 3:
Hàm số nghịch biến trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Hàm số nghịch biến trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Lời giải của GV VietJack
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.