Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\). Các mệnh đề sau đúng hay sai?
Hàm số đồng biến trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\), nghịch biến trên \(\left( { - 1;1} \right)\).
Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\). Các mệnh đề sau đúng hay sai?
Quảng cáo
Trả lời:

Câu hỏi cùng đoạn
Câu 2:
Hàm số đồng biến trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Lời giải của GV VietJack
Tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có \(y' = \frac{1}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Bảng biến thiên

Vậy hàm số đã cho đồng biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\). Chọn Đ
Câu 3:
Hàm số nghịch biến trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Hàm số nghịch biến trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Lời giải của GV VietJack
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Dựa đồ thị hàm số \(y = f'\left( x \right)\) ta thấy \(y = f'\left( x \right)\) là hàm số xác định và liên tục trên \(\mathbb{R}\), \(f'\left( x \right) < 0,\;\forall x \in \left( { - \infty \;;\; - 1} \right)\), \(f'\left( x \right) \ge 0,\;\forall x \in \left( { - 1\;;\; + \infty } \right)\) nên hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.