Câu hỏi:

19/08/2025 24 Lưu

Xe I đi từ A và xe II đi từ B. Nếu hai xe khởi hành cùng một lúc thì gặp nhau ở C cách A là 12 km và C cách B là 18 km. Nếu hai xe muốn gặp nhau ở chính giữa quãng đường AB thì xe I phải đi trước xe II 10 phút. Tính vận tốc mỗi xe.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đổi 10 phút = \(\frac{1}{6}\) giờ.

Quãng đường AB dài là: \(12 + 18 = 30\) (km)

Nửa quãng đường AB là: \(30:2 = 15\) (km)

Tỉ số quãng đường xe I và xe II đi được khi khởi hành cùng lúc là: \(12:18 = \frac{2}{3}\)

Cùng một thời gian thì vận tốc và quãng đường tỉ lệ thuận với nhau. Do đó, tỉ số vận tốc của xe I và xe II là: \(\frac{2}{3}\)

Cùng một quãng đường thì vận tốc và thời gian tỉ lệ nghịch với nhau. Do đó, tỉ số thời gian xe I và xe II là: \(\frac{3}{2}\)

Thời gian xe I đi hết nửa quãng đường AB là: \(\frac{1}{6}:(3 - 2) \times 3 = \frac{1}{2}\) (giờ)

Vận tốc xe I là: \(15:\frac{1}{2} = 30\) (km/giờ)

Vận tốc xe II là: \(30:\frac{2}{3} = 45\) (km/giờ)

Đáp Số: 30 km/giờ và 45 km/giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tỉ số thời gian của ôtô và xe máy đi trên AB là: \(2:3 = \frac{2}{3}\)

Trên cùng một quãng đường AB, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch. Do đó, tỉ số vận tốc của ôtô và xe máy đi trên AB là: \(\frac{3}{2}\).

Ta có sơ đồ:

Nếu hai xe khởi hành cùng một lúc thì chúng gặp nhau cách A bao nhiêu kilômét? (ảnh 1)

Vận tốc của ôtô là: \(20:(3 - 2) \times 3 = 60\) (km/giờ)

Quãng đường AB dài là: \(60 \times 2 = 120\) (km)

Vận tốc của xe máy là: \(60 - 20 = 40\) (km/giờ)

Nếu cùng khởi hành hai xe sẽ gặp nhau sau một thời gian là:

\(120:(60 + 40) = 1,2\) (giờ)

Địa điểm gặp nhau cách A là: \(60 \times 1,2 = 72\) (km)

Đáp Số: Quãng đường AB dài: 60km

Địa điểm gặp nhau cách A: 72km

Lời giải

Hỏi xe gắn máy sẽ ở đúng điểm chính giữa khoảng cách giữa hai xe đạp lúc mấy giờ? (ảnh 1)

Giả sử khi xe gắn máy đi từ A tới C thì nó ở chính giữa hai xe đạp. Lúc đó, xe đạp đi từ A tới D, còn xe đạp đi từ B tới E.

Ta có: AC là trung bình cộng của AD và AE. Hay \(2 \times AC = AD + AE\).

Gọi thời gian xe máy đi đến điểm chính giữa hai xe đạp là t (giờ), ta có:

\(2 \times 20 \times t = 12 \times t + 88 - 16 \times t\). Hay \(40 \times t = 88 - 4 \times t\).

\(44 \times t = 88\) suy ra \(t = 88:44 = 2\) (giờ)

Vậy xe gắn máy sẽ ở đúng điểm chính giữa khoảng cách giữa hai xe đạp lúc:

\(6 + 2 = 8\) (giờ)

Đáp Số: 8 giờ.