Câu hỏi:

03/08/2025 5 Lưu

Cho hình thoi \(ABCD\) cạnh \(a\), có \(\widehat {BAD} = 60^\circ \). Gọi \(O\) là giao điểm hai đường chéo.

a) \(AO = \frac{{a\sqrt 3 }}{2}\).

b) \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = a\sqrt 2 \).

c) \(\left| {\overrightarrow {BA}  - \overrightarrow {BC} } \right| = a\sqrt 3 \).

d) Ba lực \(\overrightarrow {{F_1}}  = \overrightarrow {AB,} \,\,\overrightarrow {{F_2}}  = \overrightarrow {AD,} \,\,\overrightarrow {{F_3}} \) cùng tác động vào một vật đặt tại điểm A và ở trạng thái cân bằng biết \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 2\sqrt 3 \,{\rm{N}}\). Khi đó độ lớn của lực \(\overrightarrow {{F_3}} \) bằng \(6\,{\rm{N}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C (ảnh 1)

a) Đúng. Ta có \(\left\{ \begin{array}{l}AB = AD\\\widehat {BAD} = 60^\circ \end{array} \right. \Rightarrow \Delta ABD\) đều cạnh a \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2}\).

b) Sai. Ta có \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC = 2AO\)\( = a\sqrt 3 \).

c) Đúng. Ta có \(\left| {\overrightarrow {BA}  - \overrightarrow {BC} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\sqrt 3 \).

d) Đúng. Đặt \(\overrightarrow {AC}  = \overrightarrow F \), ta có \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \) và \(\left| {\overrightarrow F } \right| = 2\sqrt 3  \cdot \sqrt 3  = 6\,\,{\rm{(N)}}\).

Do A ở vị trí cân bằng nên hai lực \(\overrightarrow F \) và \(\overrightarrow {{F_3}} \) có cùng cường độ và ngược hướng.

Vậy cường độ lực \(\overrightarrow {{F_3}} \) bằng \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow F } \right| = 6\,\,{\rm{(N)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

\[\overrightarrow {MC}  - \overrightarrow {MB}  + \overrightarrow {BM}  + \overrightarrow {MA}  = \overrightarrow {CM}  - \overrightarrow {CB} \]\[ \Leftrightarrow \overrightarrow {BC}  + \overrightarrow {BA}  = \overrightarrow {BM} \,\]\[ \Leftrightarrow \overrightarrow {BC}  - \overrightarrow {BM} \, = \overrightarrow {AB} \]\[ \Leftrightarrow \overrightarrow {CM}  = \overrightarrow {BA} \].

Suy ra \(M\) là điểm thỏa \[ABCM\] là hình bình hành. Nên \[\overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BM} \].

Câu 2

Lời giải

Đáp án đúng là: B

Ta có \(\left| {\overrightarrow {CB}  - \overrightarrow {AD}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB}  + \overrightarrow {DA}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB}  + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right|\).

V (ảnh 1)

Gọi H, K là chân đường cao hạ từ A, D xuống BC.

Khi đó tam giác ABH vuông tại H. Mà \(\widehat {ABC} = 45^\circ \). Suy ra tam giác ABH vuông cân tại H.

Do đó AH = BH = 2a.

Suy ra BK = BH + HK = BH + AD = 4a.

Xét tam giác \(BDK\) vuông tại K, ta có \(BD = \sqrt {D{K^2} + B{K^2}}  = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {4a} \right)}^2}}  = 2a\sqrt 5 \).

Vậy \(\left| {\overrightarrow {CB}  - \overrightarrow {AD}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {DB} } \right| = BD = 2a\sqrt 5 \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP