Câu hỏi:

03/08/2025 2 Lưu

Cho vectơ \(\overrightarrow a = \left( {1; - 2} \right)\). Với giá trị nào của \(y\) thì vectơ \(\overrightarrow b = \left( {3;y} \right)\) tạo với vectơ \(\overrightarrow a \) một góc \(45^\circ \)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a  \cdot \overrightarrow b }}{{\left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|}} = \frac{{3 - 2y}}{{\sqrt 5  \cdot \sqrt {9 + {y^2}} }}\).

Góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng \(45^\circ \), suy ra \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{3 - 2y}}{{\sqrt 5  \cdot \sqrt {9 + {y^2}} }} = \frac{{\sqrt 2 }}{2}\) \(\left( 1 \right)\).

\(\left( 1 \right) \Leftrightarrow \sqrt {90 + 10{y^2}}  = 6 - 4y \Leftrightarrow \left\{ \begin{array}{l}6 - 4y \ge 0\\90 + 10{y^2} = {\left( {6 - 4y} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y \le \frac{3}{2}\\{y^2} - 8y - 9 = 0\end{array} \right. \Leftrightarrow y =  - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 2)

Dựng hình bình hành \(ABCM.\) Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB} \).

Suy ra độ lớn của tổng hợp lực tác dụng lên vật là: \[\left| {\overrightarrow F } \right| = \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {MB} } \right| = MB\].

Xét tam giác \(CMB\) có

\(M{B^2} = M{C^2} + B{C^2} - 2MC \cdot BC \cdot \cos \widehat {MCB} = {50^2} + {30^2} - 2 \cdot 50 \cdot 30 \cdot \cos 120^\circ  = 4900\).

Suy ra \(\left| {\overrightarrow F } \right| = \sqrt {4900}  = 70\) N.

Góc tạo bởi lực \(\vec F\) và phương chuyển động là \(\widehat {BMC}\) với

\(\cos \widehat {BMC} = \frac{{M{B^2} + M{C^2} - B{C^2}}}{{2MB \cdot MC}} = \frac{{{{70}^2} + {{50}^2} - {{30}^2}}}{{2 \cdot 70 \cdot 50}} = \frac{{13}}{{14}}\).

Gọi \(MD\) là quãng đường vật di chuyển, khi đó công sinh bởi lực \(\vec F\) là:

\(A = \overrightarrow F  \cdot \overrightarrow {MD}  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow {MD} } \right| \cdot \cos \widehat {BMC} = 70 \cdot 28 \cdot \frac{{13}}{{14}} = 1820\;\)J.

Đáp án: 1820.

Lời giải

a) Sai. Ta có \(\overrightarrow {CM}  = \overrightarrow {BM}  - \overrightarrow {BC}  = \frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} \).

b) Sai. Vì \(G\) là trọng tâm của tam giác \(ACM\) nên

\(3\overrightarrow {BG}  = \overrightarrow {BA}  + \overrightarrow {BM}  + \overrightarrow {BC}  = \overrightarrow {BA}  + \frac{1}{2}\overrightarrow {BA}  + \overrightarrow {BC}  = \frac{3}{2}\overrightarrow {BA}  + \overrightarrow {BC}  \Rightarrow \overrightarrow {BG}  = \frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} .\)

c) Đúng. Vì \(ABCD\) là hình chữ nhật nên \(BA \bot BC\), suy ra \(\overrightarrow {BC}  \cdot \overrightarrow {BA}  = 0\).

d) Sai. Ta có \(\overrightarrow {BG}  \cdot \overrightarrow {CM}  = \left( {\frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA}  \cdot \overrightarrow {BC}  - \frac{1}{3}{\overrightarrow {BC} ^2}\)

\( = \frac{1}{4} \cdot {\left( {4a} \right)^2} - \frac{1}{3} \cdot 0 - \frac{1}{3} \cdot {\left( {3a} \right)^2} = {a^2}.\) (\(BC = AD = 3a\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP