Câu hỏi:

03/08/2025 7 Lưu

Một vật nằm trên mặt phẳng ngang chịu tác dụng của hai lực \[\overrightarrow {{F_1}} \] có phương song song với mặt phẳng ngang và \[\overrightarrow {{F_2}} \] theo phương tạo với mặt phẳng ngang một góc \[60^\circ \](như hình vẽ). Biết rằng độ lớn của các lực là \[\left| {\overrightarrow {{F_1}} } \right| = 50\,{\rm{N}}\], \[\left| {\overrightarrow {{F_2}} } \right| = 30\,{\rm{N}}\]. Ta nhận thấy vật di chuyển theo phương nằm ngang một quãng đường \[28\]m.

c (ảnh 1)

Tính công sinh ra (đơn vị: Jun) bởi lực \(\overrightarrow F \) là hợp lực của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) nói trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c (ảnh 2)

Dựng hình bình hành \(ABCM.\) Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB} \).

Suy ra độ lớn của tổng hợp lực tác dụng lên vật là: \[\left| {\overrightarrow F } \right| = \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {MB} } \right| = MB\].

Xét tam giác \(CMB\) có

\(M{B^2} = M{C^2} + B{C^2} - 2MC \cdot BC \cdot \cos \widehat {MCB} = {50^2} + {30^2} - 2 \cdot 50 \cdot 30 \cdot \cos 120^\circ  = 4900\).

Suy ra \(\left| {\overrightarrow F } \right| = \sqrt {4900}  = 70\) N.

Góc tạo bởi lực \(\vec F\) và phương chuyển động là \(\widehat {BMC}\) với

\(\cos \widehat {BMC} = \frac{{M{B^2} + M{C^2} - B{C^2}}}{{2MB \cdot MC}} = \frac{{{{70}^2} + {{50}^2} - {{30}^2}}}{{2 \cdot 70 \cdot 50}} = \frac{{13}}{{14}}\).

Gọi \(MD\) là quãng đường vật di chuyển, khi đó công sinh bởi lực \(\vec F\) là:

\(A = \overrightarrow F  \cdot \overrightarrow {MD}  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow {MD} } \right| \cdot \cos \widehat {BMC} = 70 \cdot 28 \cdot \frac{{13}}{{14}} = 1820\;\)J.

Đáp án: 1820.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Sai. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = AB \cdot AC\cos \widehat {BAC} = 2a \cdot 3a \cdot \cos 60^\circ  = 3{a^2}\).

b) Sai. Do \(I\) là trung điểm \(BC\) nên \(\overrightarrow {AI}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \).

c) Đúng. Vì \(J \in AC\) và \(12AJ = 7AC\) nên \(\overrightarrow {AJ}  = \frac{7}{{12}}\overrightarrow {AC} \).

Khi đó, \(\overrightarrow {BJ}  = \overrightarrow {BA}  + \overrightarrow {AJ}  =  - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} \).

d) Đúng. Ta có \(\overrightarrow {AI}  \cdot \overrightarrow {BJ}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\left( { - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} } \right)\)

\( = \frac{1}{2}\left( { - {{\overrightarrow {AB} }^2} + \frac{7}{{12}}\overrightarrow {AB}  \cdot \overrightarrow {AC}  - \overrightarrow {AB}  \cdot \overrightarrow {AC}  + \frac{7}{{12}}{{\overrightarrow {AC} }^2}} \right)\)

\( = \frac{1}{2}\left( { - 4{a^2} + \frac{7}{{12}} \cdot 3{a^2} - 3{a^2} + \frac{7}{{12}} \cdot 9{a^2}} \right) = 0\).

Vậy \(AI \bot BJ\).

Lời giải

a) Đúng. \(\overrightarrow {AB}  = \left( { - 4 - 1;3 - 2} \right) = \left( { - 5;1} \right)\).

b) Sai. Ta có \[\overrightarrow {MA}  = \left( {1 - t;\;2 - 0} \right) = \left( {1 - t;\;2} \right)\].

c) Sai. \[\overrightarrow {MB}  = \left( { - 4 - t;\;3 - 0} \right) = \left( { - 4 - t;\;3} \right)\]

\[\overrightarrow {MA}  \cdot \overrightarrow {MB}  = \left( {1 - t} \right) \cdot \left( { - 4 - t} \right) + 2 \cdot 3 =  - 4 - t + 4t + {t^2} + 6 = {t^2} + 3t + 2\].

d) Đúng. Để \(\widehat {AMB} = 90^\circ \) thì \(\overrightarrow {MA}  \bot \overrightarrow {MB}  \Leftrightarrow \overrightarrow {MA}  \cdot \overrightarrow {MB}  = 0 \Leftrightarrow {t^2} + 3t + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t =  - 2\end{array} \right.\).

Vậy có hai giá trị của \(t\) để \(\widehat {AMB} = 90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP