Các mệnh đề sau đúng hay sai?
a) Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là 3
Các mệnh đề sau đúng hay sai?
a) Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau

Quảng cáo
Trả lời:

a) Dựa vào bảng biến thiên ta có đồ thị hàm số nhận các đường thẳng là các đường tiệm cận đứng, là tiệm cận ngang
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là \(3\). Chọn Đúng
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + x - 2}}{{x - 2}} = + \infty ;\)\(\mathop {\lim }\limits_{x \to 2 - } \frac{{{x^2} + x - 2}}{{x - 2}} = - \infty \)
Suy ra hàm số có tiệm cận đứng là \(x = 2\). Chọn Đúng
Lời giải
d) Vì \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} = - 1\) nên đường thẳng \(y = - 1\) là đường tiệm cận ngang của đồ thị hàm số.
Vì \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {2 - x} \right)\left( {2 + x} \right)}} = - \frac{1}{4}\) nên đường thẳng \(x = 2\) không là tiệm cận đứng của đồ thị hàm số.
Vì \(\mathop {\lim }\limits_{x \to - {2^ + }} \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} = + \infty \) nên đường thẳng \(x = - 2\) là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có hai đường tiệm cận. Chọn Sai
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.