Các mệnh đề sau đúng hay sai?
d) Tìm đường tiệm cận ngang của đồ thị hàm số \[y = \frac{{2x}}{{x + 1}} - \frac{{3x}}{{2x - 1}}\]. Vậy kết quả là: \(y = - \frac{3}{2}\)
Các mệnh đề sau đúng hay sai?
d) Tìm đường tiệm cận ngang của đồ thị hàm số \[y = \frac{{2x}}{{x + 1}} - \frac{{3x}}{{2x - 1}}\]. Vậy kết quả là: \(y = - \frac{3}{2}\)
Quảng cáo
Trả lời:
d) Ta có \[\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to - \infty } y = 2 - \frac{3}{2} = \frac{1}{2}\]
\[ \Rightarrow y = 2\] là tiệm cận ngang của đồ thị hàm số \[y = \frac{{2x}}{{x + 1}} - \frac{{3x}}{{2x - 1}}\]. Chọn Sai
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}} = - \infty \)và \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x - 2}}{{x - 1}} = + \infty \)do đó đường thẳng \(x = 1\)là đường tiệm cận đứng của đồ thị hàm số. Chọn Sai
Lời giải
a) Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to + \infty } \frac{{3x + 2}}{{x + 1}} = \) \(\mathop {{\rm{lim}}}\limits_{x \to + \infty } \frac{{3 + \frac{2}{x}}}{{1 + \frac{1}{x}}} = 3\) \( \Rightarrow y = 3\) là tiệm cận ngang của đồ thị hàm số. Chọn Đúng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.