Câu hỏi:

19/08/2025 48 Lưu

Các mệnh đề sau đúng hay sai?

d) Tìm số đường tiệm cận ngang và đứng của đồ thị hàm số \(y = \frac{{x - 2}}{{x + 1}}\). Vậy kết quả là: 2

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

d) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{x - 2}}{{x + 1}} = 1\)và \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{x + 1}} = 1\)nên đồ thị hàm số có tiệm cận ngang là \(y = 1\).

\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{x - 2}}{{x + 1}} =  + \infty \)và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{x - 2}}{{x + 1}} =  - \infty \)nên đồ thị hàm số có tiệm cận đứng là \(x =  - 1\).

Vậy đồ thị hàm số có hai tiệm cận. Chọn Đúng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + x - 2}}{{x - 2}} =  + \infty ;\)\(\mathop {\lim }\limits_{x \to 2 - } \frac{{{x^2} + x - 2}}{{x - 2}} =  - \infty \)

Suy ra hàm số có tiệm cận đứng là \(x = 2\). Chọn Đúng

Lời giải

d) Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} =  - 1\) nên đường thẳng \(y =  - 1\) là đường tiệm cận ngang của đồ thị hàm số.

Vì \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {2 - x} \right)\left( {2 + x} \right)}} =  - \frac{1}{4}\) nên đường thẳng \(x = 2\) không là tiệm cận đứng của đồ thị hàm số.

Vì \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} =  + \infty \) nên đường thẳng \(x =  - 2\) là tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số có hai đường tiệm cận. Chọn Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP