Các mệnh đề sau đúng hay sai?
a) Tìm số tiệm cận đứng của đồ thị hàm số \[y = \frac{{{x^2} - 3x - 4}}{{{x^2} - 16}}\]. Vậy kết quả là: 2
Các mệnh đề sau đúng hay sai?
a) Tìm số tiệm cận đứng của đồ thị hàm số \[y = \frac{{{x^2} - 3x - 4}}{{{x^2} - 16}}\]. Vậy kết quả là: 2
Quảng cáo
Trả lời:

a) Tập xác định \[D = \mathbb{R}\backslash \left\{ { \pm 4} \right\}\].
Ta có:
+) \(\mathop {\lim }\limits_{x \to 4} y = \mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 3x - 4}}{{{x^2} - 16}} = \mathop {\lim }\limits_{x \to 4} \frac{{\left( {x + 1} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{{x + 1}}{{x + 4}} = \frac{5}{8}\).
Suy ra đường thẳng \[x = 4\] không là đường tiệm cận đứng của đồ thị hàm số.
+) \(\mathop {\lim }\limits_{x \to {{\left( { - 4} \right)}^ - }} y = + \infty \), suy ra đường thẳng \(x = - 4\) là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có đúng một đường tiệm cận đứng. Chọn Sai
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tập xác định \(D = \mathbb{R}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = 1\) và \(\mathop {\lim }\limits_{x \to - \infty } y = - 1\) nên đồ thị hàm số có hai đường tiệm cận ngang. Chọn Đúng
Lời giải
b) Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + x - 2}}{{x - 2}} = + \infty ;\)\(\mathop {\lim }\limits_{x \to 2 - } \frac{{{x^2} + x - 2}}{{x - 2}} = - \infty \)
Suy ra hàm số có tiệm cận đứng là \(x = 2\). Chọn Đúng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.