Câu hỏi:

05/08/2025 40 Lưu

Một người quan sát đứng cách một cái tháp \(10\,\,{\rm{m}}\), nhìn thẳng cái tháp dưới một góc \(55^\circ \) và được phân tích như trong hình.

c (ảnh 1)

a) \(\widehat {ADC} = 45^\circ \).

b) Độ dài đoạn \(AB\) xấp xỉ bằng \(10,15\,\,{\rm{m}}\).

c) Diện tích \(\Delta ACD\) bằng \(100\,\,{{\rm{m}}^{\rm{2}}}\).

d) Chiều cao của tháp xấp xỉ bằng \(11,76\,\,{\rm{m}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \(\widehat {ADC} = 90^\circ  - 45^\circ  = 45^\circ \).

b) Đúng. Ta có \(\cos \widehat {CAB} = \frac{{AC}}{{AB}} \Rightarrow AB = \frac{{10}}{{\cos 10^\circ }} \approx 10,15\,\,{\rm{(m)}}\).

c) Sai. Ta có \(\cos \widehat {CAD} = \frac{{AC}}{{AD}} \Rightarrow AD = \frac{{10}}{{\cos 45^\circ }} = 10\sqrt 2 \,\,{\rm{(m)}}\)

Khi đó, \({S_{ACD}} = \frac{1}{2}AD \cdot AC \cdot \sin 45^\circ  = \frac{1}{2} \cdot 10\sqrt 2  \cdot 10 \cdot \frac{{\sqrt 2 }}{2} = 50\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

d) Đúng. Ta có \({S_{ABD}} = \frac{1}{2}AD \cdot AB \cdot \sin 55^\circ  \approx \frac{1}{2} \cdot 10\sqrt 2  \cdot 10,15 \cdot \sin 55^\circ  \approx 58,79\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Mặt khác \({S_{ABD}} = \frac{1}{2}AC \cdot BD \Rightarrow BD = \frac{{2{S_{ABD}}}}{{AC}} \approx 11,76\,\,{\rm{(m)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat C = 35^\circ ;a \approx 2,71;b \approx 8,01\).                              
B. \(a \approx 2,71;b \approx 8,01\).
C. \(\widehat C = 35^\circ ;a = 2,71;b = 8\).     
D. \(a = 2,71;b = 8\).

Lời giải

Đáp án đúng là: A

\(\,\widehat A = 15^\circ ,\,\,\widehat B = 130^\circ  \Rightarrow \widehat C = 180^\circ  - \widehat A - \widehat B = 35^\circ .\)\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Leftrightarrow \frac{a}{{\sin 15^\circ }} = \frac{b}{{\sin 130^\circ }} = \frac{6}{{\sin 35^\circ }}\)

\( \Rightarrow a \approx 2,71;b \approx 8,01\).

Lời giải

Giả sử tàu du lịch xuất phát từ vị trí \(A\), chuyển động theo hướng \(N80^\circ E\) tới vị trí \(B\) sau đó chuyển hướng \(E80^\circ S\) tới vị trí \(C\) như hình vẽ dưới đây:

Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu kilômét? (Kết quả làm tròn đến hàng phần mười). (ảnh 2)

Ta có \(\widehat {ABC} = 180^\circ  - 10^\circ  - 20^\circ  = 150^\circ \).

Tàu chạy từ vị trí \(A\) đến vị trí \(B\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 30 phút  (tức 0,5 giờ) nên: \(AB = 20 \cdot 0,5 = 10\) (km).

Tàu chạy từ vị trí  \(B\) đến vị trí  \(C\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 36 phút (tức 0,6 giờ) nên: \(BC = 20 \cdot 0,6 = 12\) (km).

Áp dụng định lí côsin cho tam giác \(ABC\) ta được:

\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot AC \cdot \cos \widehat {BAC} = {10^2} + {12^2} - 2 \cdot 10 \cdot 12 \cdot \cos 150^\circ  \approx 452\).

Suy ra \(AC \approx \sqrt {452}  \approx 21,3\,\,\,\left( {{\rm{km}}} \right)\).

Vậy khi tới đảo Cát Bà thì tàu du lịch cách vị trí xuất phát (bãi biển Đồ Sơn) một khoảng \(21,3\) km. Đáp án: 21,3.

Câu 4

A. \[17,3{\rm{m}}\].                       
B. \[17,6{\rm{m}}\].     
C. \[17,2{\rm{m}}\].                            
D. \[17,4{\rm{m}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[136\].                       
B. \[227\].                     
C. \[272\].                            
D. \[372\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP