Cho tam giác \(ABC\) có \(\cos A = \frac{1}{3}\), \(BC = 9\) và \(AC = 6\), \(M\) là trung điểm cạnh \(BC\).
a) Độ dài cạnh \(AB = 8\).
b) Diện tích hình tròn ngoại tiếp tam giác \(ABC\) là \({S_{{\rm{ht1}}}} = 9\pi \).
c) Giá trị \(\cos \widehat {AMB}\) bằng \(\frac{{\sqrt 3 }}{5}\).
d) Tính diện tích của hình tròn nội tiếp tam giác \(ABC\) là \({S_{{\rm{ht2}}}} = \pi {r^2} = \frac{{9\pi }}{2}\).
Cho tam giác \(ABC\) có \(\cos A = \frac{1}{3}\), \(BC = 9\) và \(AC = 6\), \(M\) là trung điểm cạnh \(BC\).
a) Độ dài cạnh \(AB = 8\).
b) Diện tích hình tròn ngoại tiếp tam giác \(ABC\) là \({S_{{\rm{ht1}}}} = 9\pi \).
c) Giá trị \(\cos \widehat {AMB}\) bằng \(\frac{{\sqrt 3 }}{5}\).
d) Tính diện tích của hình tròn nội tiếp tam giác \(ABC\) là \({S_{{\rm{ht2}}}} = \pi {r^2} = \frac{{9\pi }}{2}\).
Quảng cáo
Trả lời:
a) Sai. Áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos A\)\( \Leftrightarrow {9^2} = A{B^2} + {6^2} - 2 \cdot AB \cdot 6 \cdot \frac{1}{3}\)
\( \Leftrightarrow A{B^2} - 4AB - 45 = 0 \Rightarrow AB = 9\) (vì \(AB > 0\)).
b) Sai. Ta có \(\cos A = \frac{1}{3}\)\( \Rightarrow \sin A = \frac{{2\sqrt 2 }}{3}\).
Từ định lí sin, ta suy ra bán kính đường tròn ngoại tiếp tam giác \(ABC\) là:
\(R = \frac{{BC}}{{2\sin A}} = \frac{9}{{2 \cdot \frac{{2\sqrt 2 }}{3}}} = \frac{{27}}{{4\sqrt 2 }}\). Vậy \({S_{ht1}} = \pi {R^2} = \pi \cdot {\left( {\frac{{27}}{{4\sqrt 2 }}} \right)^2} = \frac{{729\pi }}{{32}}\).
c) Sai. Ta có \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB \cdot BC}} = \frac{{{9^2} + {9^2} - {6^2}}}{{2 \cdot 9 \cdot 9}} = \frac{7}{9}\); \(MB = MC = \frac{{BC}}{2} = \frac{9}{2}\).
Khi đó, \(A{M^2} = A{B^2} + M{B^2} - 2AB \cdot MB \cdot \cos B = {9^2} + {\left( {\frac{9}{2}} \right)^2} - 2 \cdot 9 \cdot \frac{9}{2} \cdot \frac{7}{9} = \frac{{153}}{4}\).
Suy ra \(AM = \frac{{\sqrt {153} }}{2}\).
Vậy \(\cos \widehat {AMB} = \frac{{A{M^2} + M{B^2} - A{B^2}}}{{2AM \cdot MB}} = \frac{{\frac{{153}}{4} + {{\left( {\frac{9}{2}} \right)}^2} - {9^2}}}{{2 \cdot \frac{{\sqrt {153} }}{2} \cdot \frac{9}{2}}} = - \frac{{5\sqrt {17} }}{{51}}\).
d) Đúng. Nửa chu vi của tam giác \(ABC\) là \(p = \frac{{AB + AC + BC}}{2} = 12\).
Diện tích của tam giác \(ABC\) là \(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} = 18\sqrt 2 \).
Với \(r\) là bán kính đường tròn nội tiếp tam giác \(ABC\), ta có \(S = pr\).
Suy ra \(r = \frac{S}{p} = \frac{{18\sqrt 2 }}{{12}} = \frac{{3\sqrt 2 }}{2}\). Vậy \({S_{ht2}} = \pi {r^2} = \pi \cdot {\left( {\frac{{3\sqrt 2 }}{2}} \right)^2} = \frac{{9\pi }}{2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(B{C^2} = A{B^2} + A{C^2} - 2.AB \cdot AC \cdot \cos \widehat {BAC} = 64 + 25 - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ = 49\).
Suy ra \(BC = 7\).
Ta có nửa chu vi của \(\Delta ABC\) là: \(p = \frac{{5 + 7 + 8}}{2} = 10\).
Diện tích của \(\Delta ABC\) là: \(S = \sqrt {10 \cdot \left( {10 - 8} \right) \cdot \left( {10 - 5} \right) \cdot \left( {10 - 7} \right)} = 10\sqrt 3 \).
Vì \(S = \frac{1}{2}AH \cdot BC\)\( \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{2 \cdot 10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7} \approx 4,95\).
Đáp án: 4,95.
Lời giải
Đáp án đúng là: C
Tam giác \[ABC\] cân tại \(A\) nên \(\widehat B = \frac{{180^\circ - \widehat A}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).
Áp dụng định lí côsin trong\(\Delta ABC\), ta có:
\[B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC\cos 120^\circ \]\[ = {a^2} + {a^2} - 2a \cdot a \cdot \left( { - \frac{1}{2}} \right) = 3{a^2}\].
\( \Rightarrow BC = a\sqrt 3 \)\( \Rightarrow BM = \frac{{2a\sqrt 3 }}{5}\).
Áp dụng định lí côsin trong \(\Delta ABM\), ta có:
\[A{M^2} = A{B^2} + B{M^2} - 2AB.BM.cos30^\circ = {a^2} + {\left( {\frac{{2a\sqrt 3 }}{5}} \right)^2} - 2a \cdot \frac{{2a\sqrt 3 }}{5} \cdot \frac{{\sqrt 3 }}{2} = \frac{{7{a^2}}}{{25}}\].
\[ \Rightarrow AM = \frac{{a\sqrt 7 }}{5}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.