Câu hỏi:

05/08/2025 31 Lưu

Cho tam giác \(ABC\) có số đo các cạnh lần lượt là \(7,9\) và \(12\). Gọi \(S,R,p,r\) lần lượt là diện tích, bán kính đường tròn ngoại tiếp, nửa chu vi, bán kính đường tròn nội tiếp tam giác.

a) \(p = 14\).

b) \(S = 13\sqrt 5 \).

c) \(R = \frac{{7\sqrt 5 }}{{10}}\).

d) \(r = \sqrt 3 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử \(a = 7,b = 9,c = 12\).

a) Đúng. Ta có \(p = \frac{{a + b + c}}{2} = \frac{{7 + 9 + 12}}{2} = 14\).

b) Sai. Theo công thức Heron, ta có:

\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {14\left( {14 - 7} \right)\left( {14 - 9} \right)\left( {14 - 12} \right)}  = 14\sqrt 5 \).

c) Sai. Ta có \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7 \cdot 9 \cdot 12}}{{4 \cdot 14\sqrt 5 }} = \frac{{27\sqrt 5 }}{{10}}\).

d) Sai. Ta có \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14\sqrt 5 }}{{14}} = \sqrt 5 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử tàu du lịch xuất phát từ vị trí \(A\), chuyển động theo hướng \(N80^\circ E\) tới vị trí \(B\) sau đó chuyển hướng \(E80^\circ S\) tới vị trí \(C\) như hình vẽ dưới đây:

Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu kilômét? (Kết quả làm tròn đến hàng phần mười). (ảnh 2)

Ta có \(\widehat {ABC} = 180^\circ  - 10^\circ  - 20^\circ  = 150^\circ \).

Tàu chạy từ vị trí \(A\) đến vị trí \(B\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 30 phút  (tức 0,5 giờ) nên: \(AB = 20 \cdot 0,5 = 10\) (km).

Tàu chạy từ vị trí  \(B\) đến vị trí  \(C\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 36 phút (tức 0,6 giờ) nên: \(BC = 20 \cdot 0,6 = 12\) (km).

Áp dụng định lí côsin cho tam giác \(ABC\) ta được:

\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot AC \cdot \cos \widehat {BAC} = {10^2} + {12^2} - 2 \cdot 10 \cdot 12 \cdot \cos 150^\circ  \approx 452\).

Suy ra \(AC \approx \sqrt {452}  \approx 21,3\,\,\,\left( {{\rm{km}}} \right)\).

Vậy khi tới đảo Cát Bà thì tàu du lịch cách vị trí xuất phát (bãi biển Đồ Sơn) một khoảng \(21,3\) km. Đáp án: 21,3.

Lời giải

Ta có \(B{C^2} = A{B^2} + A{C^2} - 2.AB \cdot AC \cdot \cos \widehat {BAC} = 64 + 25 - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ  = 49\).

Suy ra \(BC = 7\).

Ta có nửa chu vi của \(\Delta ABC\) là: \(p = \frac{{5 + 7 + 8}}{2} = 10\).

Diện tích của \(\Delta ABC\) là: \(S = \sqrt {10 \cdot \left( {10 - 8} \right) \cdot \left( {10 - 5} \right) \cdot \left( {10 - 7} \right)}  = 10\sqrt 3 \).

Vì \(S = \frac{1}{2}AH \cdot BC\)\( \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{2 \cdot 10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7} \approx 4,95\).

Đáp án: 4,95.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP