Các mệnh đề sau đúng hay sai?
b) Hai người \(A\), \(B\)đang chạy xe ngược chiều nhau thì xảy ra va chạm, hai xe tiếp tục di chuyển theo chiều của mình thêm một quãng đường nữa thì dừng hẳn. Biết rằng sau khi va chạm, một người di chuyển tiếp với vận tốc \({v_1}\left( t \right) = 6 - 3t\)mét trên giây, người còn lại di chuyển với vận tốc \({v_2}\left( t \right) = 12 - 4t\)mét trên giây. khoảng cách hai xe khi đã dừng hẳn là 24 mét
Các mệnh đề sau đúng hay sai?
b) Hai người \(A\), \(B\)đang chạy xe ngược chiều nhau thì xảy ra va chạm, hai xe tiếp tục di chuyển theo chiều của mình thêm một quãng đường nữa thì dừng hẳn. Biết rằng sau khi va chạm, một người di chuyển tiếp với vận tốc \({v_1}\left( t \right) = 6 - 3t\)mét trên giây, người còn lại di chuyển với vận tốc \({v_2}\left( t \right) = 12 - 4t\)mét trên giây. khoảng cách hai xe khi đã dừng hẳn là 24 mét
Quảng cáo
Trả lời:
b) Thời gian người thứ nhất di chuyển sau khi va chạm là: \(6 - 3t = 0\)\( \Leftrightarrow t = 2\)giây.
Quãng đường người thứ nhất di chuyển sau khi va chạm là:
\({S_1} = \int\limits_0^2 {\left( {6 - 3t} \right){\rm{d}}t} \)\( = \left. {\left( {6t - \frac{{3{t^2}}}{2}} \right)} \right|_0^2\)\( = 6\)mét.
Thời gian người thứ hai di chuyển sau khi va chạm là: \(12 - 4t = 0\)\( \Leftrightarrow t = 3\)giây.
Quãng đường người thứ hai di chuyển sau khi va chạm là:
\({S_2} = \int\limits_0^3 {\left( {12 - 4t} \right){\rm{d}}t} \)\( = \left. {\left( {12t - 2{t^2}} \right)} \right|_0^3\)\( = 18\)mét.
Khoảng cách hai xe khi đã dừng hẳn là: \(S = {S_1} + {S_2}\)\( = 6 + 18 = 24\)mét. Chọn Đúng
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}} = - \infty \)và \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x - 2}}{{x - 1}} = + \infty \)do đó đường thẳng \(x = 1\)là đường tiệm cận đứng của đồ thị hàm số. Chọn Sai
Lời giải
a) Đkxđ: \(x \ne - 1\)
Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{x - 2}}{{x + 1}} = 1\). Nên đồ thị hàm số có một đường tiệm cận ngang \(y = 1\)
Khi \(x \to {\left( { - 1} \right)^ + }\) thì \(x + 1 > 0\) và Khi \(x \to {\left( { - 1} \right)^ - }\) thì \(x + 1 < 0\) nên ta có
\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{x - 2}}{{x + 1}} = - \infty ,\,\,\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{x - 2}}{{x + 1}} = + \infty \)
Suy ra đồ thị hàm số có một đường tiệm cận đứng \(x = - 1\). Chọn Sai
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.