Các mệnh đề sau đúng hay sai?
c) Đồ thị hàm số \(y = \frac{{\sqrt {5{x^2} + x + 1} }}{{\sqrt {2x - 1} - x}}\) có 4 đường tiệm cận đứng và đường tiệm cận ngang
Các mệnh đề sau đúng hay sai?
c) Đồ thị hàm số \(y = \frac{{\sqrt {5{x^2} + x + 1} }}{{\sqrt {2x - 1} - x}}\) có 4 đường tiệm cận đứng và đường tiệm cận ngang
Quảng cáo
Trả lời:
c) Điều kiện \(\left\{ \begin{array}{l}5{x^2} + x + 1 \ge 0\\2x - 1 \ge 0\\\sqrt {2x - 1} - x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{1}{2}\\2x - 1 \ne {x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \ne 1\end{array} \right.\).
Do \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {5{x^2} + x + 1} }}{{\sqrt {2x - 1} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {5 + \frac{1}{x} + \frac{1}{{{x^2}}}} }}{{\sqrt {\frac{2}{x} - \frac{1}{{{x^2}}}} - 1}} = - \sqrt 5 \) nên đồ thị hàm số có một đường tiệm cận ngang \(y = - \sqrt 5 \).
Do \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {5{x^2} + x + 1} }}{{\sqrt {2x - 1} - x}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\sqrt {5{x^2} + x + 1} }}{{\sqrt {2x - 1} - x}} = - \infty \) nên đồ thị hàm số có một đường tiệm cận đứng là \(x = 1\). Chọn Sai
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}} = - \infty \)và \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x - 2}}{{x - 1}} = + \infty \)do đó đường thẳng \(x = 1\)là đường tiệm cận đứng của đồ thị hàm số. Chọn Sai
Lời giải
a) Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to + \infty } \frac{{3x + 2}}{{x + 1}} = \) \(\mathop {{\rm{lim}}}\limits_{x \to + \infty } \frac{{3 + \frac{2}{x}}}{{1 + \frac{1}{x}}} = 3\) \( \Rightarrow y = 3\) là tiệm cận ngang của đồ thị hàm số. Chọn Đúng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.