Quảng cáo
Trả lời:

1. Tập xác định: D = \[\mathbb{R}\] \ {–1}.

Đồ thị của hàm số giao với trục Ox tại điểm \[\left( { - \frac{1}{2};0} \right)\] và giao với trục Oy tại điểm \[(0; - 1)\].
Đồ thị của hàm số được biểu diễn như hình bên.
Tâm đối xứng của đồ thị hàm số là điểm \[I( - 1;2)\]
Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = -1 và y = 2.Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử hàm số bậc ba cần tìm có dạng \({\rm{y}} = {\rm{f}}({\rm{x}}) = {\rm{a}}{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + {\rm{cx}} + {\rm{d}}({\rm{a}} \ne 0)\).
Quan sát Hình vẽ , ta thấy đồ thị hàm số đi qua các điềm \((0;5),(1;1)\) và \((3;5)\).
Với \({\rm{x}} = 0\) thì \({\rm{y}} = 5\), thay vào hàm số ta suy ra \({\rm{d}} = 5\).
Khi đó hàm số trở thành \({\rm{y}} = {\rm{f}}({\rm{x}}) = {\rm{a}}{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + {\rm{cx}} + 5\).
Với \({\rm{x}} = 1\) thì \({\rm{y}} = 1\), thay vào hàm số \({\rm{ta}}\) được \({\rm{a}} + {\rm{b}} + {\rm{c}} + 5 = 1\) (1).
Ta thấy đồ thị hàm số có hai điềm cực trị là \((1;1)\) và \((3;5)\), tức là phương trình \({{\rm{y}}^\prime } = 0\) có hai nghiệm là \({\rm{x}} = 1\) và \({\rm{x}} = 3\).
Ta có \({{\rm{y}}^\prime } = 3{\rm{a}}{{\rm{x}}^2} + 2{\rm{bx}} + {\rm{c}}\).
Với \({\rm{x}} = 1\) thì \({{\rm{y}}^\prime } = 0\) nên ta có \(3{\rm{a}} + 2\;{\rm{b}} + {\rm{c}} = 0\) (2).
Với \({\rm{x}} = 3\) thì \({{\rm{y}}^\prime } = 0\) nên ta có \(27{\rm{a}} + 6\;{\rm{b}} + {\rm{c}} = 0\) (3).
Từ (1), (2) và (3) ta suy ra \({\rm{a}} = - 1;{\rm{b}} = 6;{\rm{c}} = - 9\).
Vậy hàm số cần tìm là \({\rm{y}} = {\rm{f}}({\rm{x}}) = - {{\rm{x}}^3} + 6{{\rm{x}}^2} - 9{\rm{x}} + 5\).