Câu hỏi:

07/08/2025 25 Lưu

Cho hình bình hành \[ABCD\]. Vectơ tổng \[\overrightarrow {CB} + \overrightarrow {CD} \] bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Theo quy tắc hình bình hành trong hình bình hành \[ABCD\], ta có \[\overrightarrow {CB}  + \overrightarrow {CD}  = \overrightarrow {CA} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vật đứng yên nên ba lực đã cho cân bằng. Khi đó ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow 0 \).

Suy ra \[\overrightarrow {{F_3}}  =  - \left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)\].

c (ảnh 2)

Dựng hình bình hành \[AMBN\]. Ta có \[ - \overrightarrow {{F_1}}  - \overrightarrow {{F_2}}  =  - \overrightarrow {MA}  - \overrightarrow {MB}  =  - \overrightarrow {MN} \].

Suy ra \[\left| {\overrightarrow {{F_3}} } \right| = \left| { - \overrightarrow {MN} } \right| = MN = \frac{{2\sqrt 3 MA}}{2} = 25\sqrt 3 \] (N). Vậy \(a = 25\).

Đáp án: 25.

Câu 2

Lời giải

Đáp án đúng là: A

Ta có \[\overrightarrow {AB}  + \overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DA} } \right) = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow {AA}  = \overrightarrow 0 \].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP