Câu hỏi:

19/08/2025 23 Lưu

Cho hai lực \(\overrightarrow {{F_1}}  = \overrightarrow {MA} ,\overrightarrow {{F_2}}  = \overrightarrow {MB} \) cùng tác động vào một vật tại điểm \(M\). Cường độ hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) lần lượt là 400 N và 300 N, \(\widehat {AMB} = 90^\circ \). Cường độ của lực tác động lên vật bằng bao nhiêu Newton?

Cường độ của lực tác động lên vật bằng bao nhiêu Newton? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có tổng lực tác dụng lên vật: \({\vec F_1} + {\vec F_2} = \overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {MC} \) (Với \(C\) là điểm sao cho \(AMBC\) là hình bình hành).

Khi đó cường độ lực tác dụng lên vật: \(\left| {{{\vec F}_1} + {{\vec F}_2}} \right| = \left| {\overrightarrow {MC} } \right| = MC\).

Ta có: \(MA = \left| {\overrightarrow {MA} } \right| = \left| {{{\vec F}_1}} \right| = 400\;{\rm{N}}\), \[MB = \left| {\overrightarrow {MB} } \right| = \left| {{{\vec F}_2}} \right| = 300\;{\rm{N}}\].

Mặt khác, do \(\widehat {AMB} = 90^\circ \) nên \(AMBC\) là hình chữ nhật.

Khi đó \(MC = \sqrt {M{A^2} + M{B^2}}  = \sqrt {{{400}^2} + {{300}^2}}  = 500\,\,{\rm{(N)}}\).

Đáp án: 500.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vật đứng yên nên ba lực đã cho cân bằng. Khi đó ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow 0 \).

Suy ra \[\overrightarrow {{F_3}}  =  - \left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)\].

c (ảnh 2)

Dựng hình bình hành \[AMBN\]. Ta có \[ - \overrightarrow {{F_1}}  - \overrightarrow {{F_2}}  =  - \overrightarrow {MA}  - \overrightarrow {MB}  =  - \overrightarrow {MN} \].

Suy ra \[\left| {\overrightarrow {{F_3}} } \right| = \left| { - \overrightarrow {MN} } \right| = MN = \frac{{2\sqrt 3 MA}}{2} = 25\sqrt 3 \] (N). Vậy \(a = 25\).

Đáp án: 25.

Câu 2

Lời giải

Đáp án đúng là: B

Ta có \(\left| {\overrightarrow {CB}  - \overrightarrow {AD}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB}  + \overrightarrow {DA}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB}  + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right|\).

c (ảnh 1)

Gọi H, K là chân đường cao hạ từ A, D xuống BC.

Khi đó tam giác ABH vuông tại H. Mà \(\widehat {ABC} = 45^\circ \). Suy ra tam giác ABH vuông cân tại H.

Do đó AH = BH = 2a.

Suy ra BK = BH + HK = BH + AD = 4a.

Xét tam giác \(BDK\) vuông tại K, ta có \(BD = \sqrt {D{K^2} + B{K^2}}  = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {4a} \right)}^2}}  = 2a\sqrt 5 \).

Vậy \(\left| {\overrightarrow {CB}  - \overrightarrow {AD}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {DB} } \right| = BD = 2a\sqrt 5 \).

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP