Câu hỏi:

09/08/2025 6,583 Lưu

Thể tích nước của một bề bơi sau t phút b ơm tính theo công thức \(V\left( t \right) = \frac{1}{{100}}\left( {30{t^3} - \frac{{{t^4}}}{4}} \right)\) \(\left( {0 \le t \le 90} \right)\). Tốc độ bơm nước tại thời điểm t được tính bởi \(v\left( t \right) = V'\left( t \right)\). Trong các khẳng định sau, khẳng định nào đúng.

A. Tốc độ bơm giảm từ phút 60 đến phút thứ 90.

B. Tốc độ bơm luôn giảm.

C. Tốc độ bơm tăng từ phút 0 đến phút thứ 75.

D. Cả ba đáp án đều sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Xét hàm \(V' = \frac{9}{{10}}{t^2} - \frac{1}{{100}}{t^3}{\rm{  }}\left( {0 \le t \le 90} \right)\); \(V'' = \frac{9}{5}t - \frac{3}{{100}}{t^2} \Rightarrow V'' = 0{\rm{ khi  }}t = 0,t = 60\)

Dựa vào bảng biến thiên ta có hàm số \(V'\) đồng biến trên \(\left( {0\, & ;60} \right)\) và nghịch biến trên \(\left( {60;\,90} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

B. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{15}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

C. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{14}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

D. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{13}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Chọn A

Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)

Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:

\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)

Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.

Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx}  + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)

\(S'\left( x \right) = 0 \Leftrightarrow  - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow  - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\)

Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Chọn A

Đặt kích thước các cạnh như hình vẽ

Từ hình vuông có cạnh bằng 6 người ta cắt bỏ các tam giác vuông cân tạo thành hình tô đậm như hình vẽ (ảnh 2)

Ta có \(\frac{x}{{\sqrt 2 }} + y\sqrt 2  + \frac{x}{{\sqrt 2 }} = 6\)\( \Leftrightarrow x + y = 3\sqrt 2 \)\( \Leftrightarrow y = 3\sqrt 2  - x\) với \(0 < x < 3\sqrt 2 \).

Thể tích của khối hộp tạo thành là \(V = {x^2}y = {x^2}\left( {3\sqrt 2  - x} \right)\).

Ta có \[V' = 3x\left( {2\sqrt 2  - x} \right) = 0 \Rightarrow x = 2\sqrt 2 \].

Bảng biến thiên

Từ hình vuông có cạnh bằng 6 người ta cắt bỏ các tam giác vuông cân tạo thành hình tô đậm như hình vẽ (ảnh 3)
Vậy: \(\max V = 8\sqrt 2 \) khi \(x = 2\sqrt 2 \),\(y = \sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{900}}{{6 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].             
B. \[\frac{{1200}}{{6 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].             
C. \[\frac{{700}}{{3 + \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].                                    
D. \[\frac{{600}}{{3 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\sqrt[3]{{2\pi }}\).   
B. \(\sqrt[3]{{\frac{1}{2}}}\).                           
C. \(\sqrt[3]{{\frac{1}{{2\pi }}}}\).                         
D. \(\sqrt[3]{{\frac{1}{\pi }}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP