Câu hỏi:

09/08/2025 2,432 Lưu

Dùng một dây thép dài \(60\)m uốn thành một khung có dạng như hình vẽ. Biết phần dưới là hình chữ nhật và phía trên là một tam giác đều. Diện tích lớn nhất của khung có giá trị bằng:

A. \[\frac{{900}}{{6 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].             
B. \[\frac{{1200}}{{6 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].             
C. \[\frac{{700}}{{3 + \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].                                    
D. \[\frac{{600}}{{3 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Gọi hai cạnh của hình chữ nhật là \(x\) và \(y\) như hình vẽ

Khi đó chu vi của khung là \(\left( {x + 2y} \right) + 2x = 60 \Leftrightarrow y = 30 - \frac{3}{2}x\)

Dùng một dây thép dài 60m uốn thành một khung có dạng như hình vẽ. Biết phần dưới là hình chữ nhật và phía trên là một tam giác đều (ảnh 1)

Suy ra diện tích của khung là: \(S = xy + \frac{{{x^2}\sqrt 3 }}{4} = x\left( {30 - 1,5x} \right) + \frac{{{x^2}\sqrt 3 }}{4} = \frac{{6 - \sqrt 3 }}{4}{x^2} + 30x = f\left( x \right)\)

Dễ dàng suy ra được: \({S_{{\rm{max}}}} = {\rm{max}}\,f\left( x \right) = f\left( {\frac{{60}}{{6 - \sqrt 3 }}} \right) = \frac{{900}}{{6 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Xét hàm \(V' = \frac{9}{{10}}{t^2} - \frac{1}{{100}}{t^3}{\rm{  }}\left( {0 \le t \le 90} \right)\); \(V'' = \frac{9}{5}t - \frac{3}{{100}}{t^2} \Rightarrow V'' = 0{\rm{ khi  }}t = 0,t = 60\)

Dựa vào bảng biến thiên ta có hàm số \(V'\) đồng biến trên \(\left( {0\, & ;60} \right)\) và nghịch biến trên \(\left( {60;\,90} \right)\)

Câu 2

A. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

B. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{15}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

C. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{14}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

D. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{13}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Chọn A

Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)

Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:

\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)

Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.

Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx}  + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)

\(S'\left( x \right) = 0 \Leftrightarrow  - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow  - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\)

Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP