Câu hỏi:

09/08/2025 1,204 Lưu

Một khúc gỗ tròn hình trụ cần xẻ thành một chiếc xà có tiết diện ngang là hình vuông và 4 miếng phụ như hình vẽ. Hãy xác định kích thước của các miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. Biết đường kính khúc gỗ là \(d\).

Một khúc gỗ tròn hình trụ cần xẻ thành một chiếc xà có tiết diện ngang là hình vuông và 4 miếng phụ như hình vẽ (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)

Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:

\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)

Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.

Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx}  + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)

\(S'\left( x \right) = 0 \Leftrightarrow  - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow  - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\)

Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Gọi \[x,y,h\] lần lượt là chiều dài, chiều rộng, chiều cao của hồ chứa nước, \(\left( {x > 0,y > 0,h > 0,m} \right)\)

Ta có: \(\frac{y}{x} = 2 \Leftrightarrow y = 2x\). Thể tích hồ chứa nước \(V = xyh \Leftrightarrow h = \frac{V}{{xy}} = \frac{{576}}{{x\left( {2x} \right)}} = \frac{{288}}{{{x^2}}}\)

Diện tích cần xây dựng hồ chứa nước:

\(S\left( x \right) = 2xy + 2xh + 2yh = 2x\left( {2x} \right) + 2x\frac{{288}}{{{x^2}}} + 2\left( {2x} \right)\frac{{288}}{{{x^2}}} = 4{x^2} + \frac{{1728}}{x}\)

Để chi phí nhân công là ít nhất thì diện tích cần xây dựng là nhỏ nhất, mà vẫn đạt thể tích như mong muốn.

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) nhỏ nhất

\( \Leftrightarrow S\left( x \right) = 4{x^2} + \frac{{1728}}{x} \Rightarrow S'\left( x \right) = 0 \Leftrightarrow 8x - \frac{{1728}}{{{x^2}}} = 0 \Leftrightarrow x = 6\)

Bảng biến thiên:

Nhà Long muốn xây một hồ chứa nước có dạng một khối hộp chữ nhật có nắp đậy có thể tích bằng 576m^3 (ảnh 1)

Vậy kích thước của hồ là: rộng 6m, dài 12m, cao 8m.

Diện tích cần xây: \(432{m^2}\) và chi phí ít nhất là: \(432x500.000 = 216.000.000\)

Câu 2

Lời giải

Chọn B

Gọi hai cạnh của hình chữ nhật là \(x\) và \(y\) như hình vẽ

Khi đó chu vi của khung là \(\left( {x + 2y} \right) + 2x = 60 \Leftrightarrow y = 30 - \frac{3}{2}x\)

Dùng một dây thép dài 60m uốn thành một khung có dạng như hình vẽ. Biết phần dưới là hình chữ nhật và phía trên là một tam giác đều (ảnh 1)

Suy ra diện tích của khung là: \(S = xy + \frac{{{x^2}\sqrt 3 }}{4} = x\left( {30 - 1,5x} \right) + \frac{{{x^2}\sqrt 3 }}{4} = \frac{{6 - \sqrt 3 }}{4}{x^2} + 30x = f\left( x \right)\)

Dễ dàng suy ra được: \({S_{{\rm{max}}}} = {\rm{max}}\,f\left( x \right) = f\left( {\frac{{60}}{{6 - \sqrt 3 }}} \right) = \frac{{900}}{{6 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP