Câu hỏi:

09/08/2025 19 Lưu

Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số \[Q\left( t \right) = 2{t^2} + t\], trong đó \[t\] được tính bằng giây (s) và \[Q\] được tính theo Culong \[\left( C \right).\] Tính cường độ dòng điện tại thời điểm \[t = 4\]s.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cường độ dòng điện tại thời điểm \[t = 4\]s là \[Q'\left( t \right) = I\left( t \right) = 4t + 1 \Rightarrow t\left( 4 \right) = 17.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số lần giảm \(0,25\$ \). Cước thuê bao hàng tháng lúc này là \(40 - 0,25x\) với \(0 \le x \le 160\) (do mức cước không thể âm), và số thuê bao mới là \(1000x\).

Do đó, tổng số thuê bao là \(100000 + 1000x\).

Hàm doanh thu được cho bởi R = (số thuê bao) x (cước mỗi thuê bao trả)

\[R = \left( {100000 + 1000x} \right)\left( {40 - 0,25x} \right) = 1000\left( {100 + x} \right)\left( {40 - 0,25x} \right) = 1000\left( {4000 + 15x - 0,25{x^2}} \right)\]

Đạo hàm \(R' = 0\), ta được \(R' = 1000\left( {15 - 0,5x} \right) = 0 \Leftrightarrow x = 30.{\rm{ }}\)

Vì tập xác định của \(R\) là khoảng đóng [0; 160] nên \(R\) đạt cực đại tại \(x = 30\) hoặc tại các điểm đầu mút của đoạn [0; 160].

Ta có: \[R\left( 0 \right) = 4000000;\,\,R\left( {30} \right) = 4225000\,;\,\,R\left( {160} \right) = 0\]

Vậy doanh thu tối đa khi \(x = 30\). Điều này tương ứng với 30 lần giảm \(0,25\$ \), tức là cước thuê bao hàng tháng là \(40\$  - 7,5\$  = 32,5\$ \).

Số thuê bao tại mức cước này là \(100000 + 30.\left( {1000} \right) = 130000\).

Lời giải

Đạo hàm \(n'\left( t \right) = 0\) ta có \(n'\left( t \right) = {t^2} - 12t + 32 = 0 \Leftrightarrow \left( {t - 4} \right)\left( {t - 8} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 4}\\{t = 8.}\end{array}} \right.\)

Vì tập xác định của \(n\) là một khoảng đóng \(\left[ {0;12} \right]\) nên \(n\) đạt cực đại tuyệt đối tại \(t = 0,t = 4,t = 8\) hoặc \(t = 12\):

\(n\left( 0 \right) = \frac{{{0^3}}}{3} - 6\left( {{0^2}} \right) + 32.0 = 0;\,\,n\left( 4 \right) = \frac{{{4^3}}}{3} - 6\left( {{4^2}} \right) + 32.4 = \frac{{160}}{3}\)

\(n\left( 8 \right) = \frac{{{8^3}}}{3} - 6\left( {{8^2}} \right) + 32.8 = \frac{{128}}{3};\,\,n\left( {12} \right) = \frac{{{{12}^3}}}{3} - 6\left( {{{12}^2}} \right) + 32.12 = \frac{{288}}{3} = 96\)

Do đó \(n\) đạt cực đại khi \(t = 12\) (năm).