Câu hỏi:

09/08/2025 35 Lưu

Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật Logistic được mô hình hoá bằng hàm số \(f\left( t \right) = \frac{{5000}}{{1 + 5{e^{ - t}}}},t \ge 0,\)trong đó thời gian \(t\) được tính bằng năm, kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm \(f'\left( t \right)\) sẽ biểu thị tốc độ bán hàng. Hỏi sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(f'\left( t \right) = \frac{{ - 5000{{\left( {1 + 5{e^{ - t}}} \right)}^\prime }}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\). Tốc độ bán hàng là lớn nhất khi \(f'\left( t \right)\) lớn nhất.

Đặt \(h\left( t \right) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\) có \(h'\left( t \right) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2.\left( { - 5{e^{ - t}}} \right).\left( {1 + 5{e^{ - t}}} \right).25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)

\(\begin{array}{l} = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\\h'\left( t \right) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5\,\,\left( {thoa\,\,man} \right)\end{array}\)

Ta có bảng biến thiên với \(t \in \left[ {0; + \infty } \right)\):

(Trả lời ngắn) Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật Logistic (ảnh 1)

Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số lần giảm \(0,25\$ \). Cước thuê bao hàng tháng lúc này là \(40 - 0,25x\) với \(0 \le x \le 160\) (do mức cước không thể âm), và số thuê bao mới là \(1000x\).

Do đó, tổng số thuê bao là \(100000 + 1000x\).

Hàm doanh thu được cho bởi R = (số thuê bao) x (cước mỗi thuê bao trả)

\[R = \left( {100000 + 1000x} \right)\left( {40 - 0,25x} \right) = 1000\left( {100 + x} \right)\left( {40 - 0,25x} \right) = 1000\left( {4000 + 15x - 0,25{x^2}} \right)\]

Đạo hàm \(R' = 0\), ta được \(R' = 1000\left( {15 - 0,5x} \right) = 0 \Leftrightarrow x = 30.{\rm{ }}\)

Vì tập xác định của \(R\) là khoảng đóng [0; 160] nên \(R\) đạt cực đại tại \(x = 30\) hoặc tại các điểm đầu mút của đoạn [0; 160].

Ta có: \[R\left( 0 \right) = 4000000;\,\,R\left( {30} \right) = 4225000\,;\,\,R\left( {160} \right) = 0\]

Vậy doanh thu tối đa khi \(x = 30\). Điều này tương ứng với 30 lần giảm \(0,25\$ \), tức là cước thuê bao hàng tháng là \(40\$  - 7,5\$  = 32,5\$ \).

Số thuê bao tại mức cước này là \(100000 + 30.\left( {1000} \right) = 130000\).

Lời giải

Đạo hàm \(n'\left( t \right) = 0\) ta có \(n'\left( t \right) = {t^2} - 12t + 32 = 0 \Leftrightarrow \left( {t - 4} \right)\left( {t - 8} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 4}\\{t = 8.}\end{array}} \right.\)

Vì tập xác định của \(n\) là một khoảng đóng \(\left[ {0;12} \right]\) nên \(n\) đạt cực đại tuyệt đối tại \(t = 0,t = 4,t = 8\) hoặc \(t = 12\):

\(n\left( 0 \right) = \frac{{{0^3}}}{3} - 6\left( {{0^2}} \right) + 32.0 = 0;\,\,n\left( 4 \right) = \frac{{{4^3}}}{3} - 6\left( {{4^2}} \right) + 32.4 = \frac{{160}}{3}\)

\(n\left( 8 \right) = \frac{{{8^3}}}{3} - 6\left( {{8^2}} \right) + 32.8 = \frac{{128}}{3};\,\,n\left( {12} \right) = \frac{{{{12}^3}}}{3} - 6\left( {{{12}^2}} \right) + 32.12 = \frac{{288}}{3} = 96\)

Do đó \(n\) đạt cực đại khi \(t = 12\) (năm).