Câu hỏi:

09/08/2025 17 Lưu

Một công ty kinh doanh bất động sản có 20 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 2 triệu đồng/1 tháng thì tất cả các căn hộ đều có người thuê. Nhưng cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200 nghìn đồng/1 tháng thì có thêm một căn hộ bị bỏ trống. Hỏi công ty nên cho thuê mỗi căn hộ bao nhiêu tiền một tháng để tổng số tiền thu được là lớn nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử giá thuê mỗi căn hộ là \(x\) triệu đồng/1 tháng và số căn hộ cho thuê là \(y\).

Khi đó tổng số tiền thu được sẽ là \(x.y\).

Theo đề bài, ta có: \(y = 20 - 5\left( {x - 2} \right)\) (vì cứ mỗi lần tăng giá thuê mỗi căn hộ thêm 200 nghìn đồng/1 tháng thì có thêm một căn hộ bị bỏ trống).

Do đó ta cần tìm giá trị của \(x\) sao cho hàm số \(f\left( x \right) = x\left[ {20 - 5\left( {x - 2} \right)} \right]\) đạt giá trị lớn nhất.

Ta có: \(f'\left( x \right) = 30 - 10x\)\( = 0 \Rightarrow 30 - 10x = 0 \Rightarrow x = 3\)

Cuối cùng ta kiểm tra xem điểm cực này có phải là điểm cực đại hay không:

Xác định khoảng: \(\left[ { - \infty ;3} \right],\,\,\left[ {3; + \infty } \right]\)

Chọn \({x_1} = 2 \Rightarrow f\left( x \right) = 10\) , chọn \({x_2} = 4 \Rightarrow f\left( x \right) =  - 10\)

Vì đạo hàm dương với mọi \(x < 3\) là âm với mọi \(x > 3 \Rightarrow \) hàm số cực đại tại \(x = 3\)

Vì vậy, công ty nên cho thuê mỗi căn hộ với giá 3 triệu đồng/1 tháng để tổng số tiền thu được là lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số lần giảm \(0,25\$ \). Cước thuê bao hàng tháng lúc này là \(40 - 0,25x\) với \(0 \le x \le 160\) (do mức cước không thể âm), và số thuê bao mới là \(1000x\).

Do đó, tổng số thuê bao là \(100000 + 1000x\).

Hàm doanh thu được cho bởi R = (số thuê bao) x (cước mỗi thuê bao trả)

\[R = \left( {100000 + 1000x} \right)\left( {40 - 0,25x} \right) = 1000\left( {100 + x} \right)\left( {40 - 0,25x} \right) = 1000\left( {4000 + 15x - 0,25{x^2}} \right)\]

Đạo hàm \(R' = 0\), ta được \(R' = 1000\left( {15 - 0,5x} \right) = 0 \Leftrightarrow x = 30.{\rm{ }}\)

Vì tập xác định của \(R\) là khoảng đóng [0; 160] nên \(R\) đạt cực đại tại \(x = 30\) hoặc tại các điểm đầu mút của đoạn [0; 160].

Ta có: \[R\left( 0 \right) = 4000000;\,\,R\left( {30} \right) = 4225000\,;\,\,R\left( {160} \right) = 0\]

Vậy doanh thu tối đa khi \(x = 30\). Điều này tương ứng với 30 lần giảm \(0,25\$ \), tức là cước thuê bao hàng tháng là \(40\$  - 7,5\$  = 32,5\$ \).

Số thuê bao tại mức cước này là \(100000 + 30.\left( {1000} \right) = 130000\).

Lời giải

Đạo hàm \(n'\left( t \right) = 0\) ta có \(n'\left( t \right) = {t^2} - 12t + 32 = 0 \Leftrightarrow \left( {t - 4} \right)\left( {t - 8} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 4}\\{t = 8.}\end{array}} \right.\)

Vì tập xác định của \(n\) là một khoảng đóng \(\left[ {0;12} \right]\) nên \(n\) đạt cực đại tuyệt đối tại \(t = 0,t = 4,t = 8\) hoặc \(t = 12\):

\(n\left( 0 \right) = \frac{{{0^3}}}{3} - 6\left( {{0^2}} \right) + 32.0 = 0;\,\,n\left( 4 \right) = \frac{{{4^3}}}{3} - 6\left( {{4^2}} \right) + 32.4 = \frac{{160}}{3}\)

\(n\left( 8 \right) = \frac{{{8^3}}}{3} - 6\left( {{8^2}} \right) + 32.8 = \frac{{128}}{3};\,\,n\left( {12} \right) = \frac{{{{12}^3}}}{3} - 6\left( {{{12}^2}} \right) + 32.12 = \frac{{288}}{3} = 96\)

Do đó \(n\) đạt cực đại khi \(t = 12\) (năm).