Một con cá hồi bơi ngược dòng nước để vượt một khoảng cách là \(300\;\)km. Vận tốc dòng nước là \(6\)(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\)(km/h) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c{v^3}t\) (trong đó \(c\) là hằng số dương, \(E\) được tính bằng đơn vị Jun). Cá bơ ngược dòng quãng đường \(300\;\)km trên trong khoảng thời gian \[t\] với vận tốc bằng bao nhiêu để năng lượng tiêu hao là thấp nhất?
Một con cá hồi bơi ngược dòng nước để vượt một khoảng cách là \(300\;\)km. Vận tốc dòng nước là \(6\)(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\)(km/h) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c{v^3}t\) (trong đó \(c\) là hằng số dương, \(E\) được tính bằng đơn vị Jun). Cá bơ ngược dòng quãng đường \(300\;\)km trên trong khoảng thời gian \[t\] với vận tốc bằng bao nhiêu để năng lượng tiêu hao là thấp nhất?
Quảng cáo
Trả lời:
Vận tốc khi cá bơi ngược dòng sẽ là \(v - 6\,\)(km/h).
Thời gian để bơi quãng đường \(300\;\)km là \(t = \frac{{300}}{{v - 6}}\left( h \right)\).
Năng lượng tiêu hao là \(E\left( v \right) = 300c\frac{{{v^3}}}{{v - 6}}\,\left( J \right)\).
Do \(c > 0 \Rightarrow E{\left( v \right)_{\min }} \Leftrightarrow \frac{{{v^3}}}{{v - 6}} = {\left( {f\left( v \right)} \right)_{\min }}\).
Với \(v > 6\) ta có \(f'\left( v \right) = \frac{{3{v^2}\left( {v - 6} \right) - {v^3}}}{{{{\left( {v - 6} \right)}^2}}} = \frac{{2{v^3} - 18v}}{{{{\left( {v - 6} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{v = 0}\\{v = 9.}\end{array}} \right.\)
Lập bảng biến thiên ta nhận \(v = 9\) (do \(v > 6\)).
Vậy để năng lượng tiêu hao là thấp nhất thì vận tốc là \(9\)(km/h).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số lần giảm \(0,25\$ \). Cước thuê bao hàng tháng lúc này là \(40 - 0,25x\) với \(0 \le x \le 160\) (do mức cước không thể âm), và số thuê bao mới là \(1000x\).
Do đó, tổng số thuê bao là \(100000 + 1000x\).
Hàm doanh thu được cho bởi R = (số thuê bao) x (cước mỗi thuê bao trả)
\[R = \left( {100000 + 1000x} \right)\left( {40 - 0,25x} \right) = 1000\left( {100 + x} \right)\left( {40 - 0,25x} \right) = 1000\left( {4000 + 15x - 0,25{x^2}} \right)\]
Đạo hàm \(R' = 0\), ta được \(R' = 1000\left( {15 - 0,5x} \right) = 0 \Leftrightarrow x = 30.{\rm{ }}\)
Vì tập xác định của \(R\) là khoảng đóng [0; 160] nên \(R\) đạt cực đại tại \(x = 30\) hoặc tại các điểm đầu mút của đoạn [0; 160].
Ta có: \[R\left( 0 \right) = 4000000;\,\,R\left( {30} \right) = 4225000\,;\,\,R\left( {160} \right) = 0\]
Vậy doanh thu tối đa khi \(x = 30\). Điều này tương ứng với 30 lần giảm \(0,25\$ \), tức là cước thuê bao hàng tháng là \(40\$ - 7,5\$ = 32,5\$ \).
Số thuê bao tại mức cước này là \(100000 + 30.\left( {1000} \right) = 130000\).
Lời giải
Đạo hàm \(n'\left( t \right) = 0\) ta có \(n'\left( t \right) = {t^2} - 12t + 32 = 0 \Leftrightarrow \left( {t - 4} \right)\left( {t - 8} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 4}\\{t = 8.}\end{array}} \right.\)
Vì tập xác định của \(n\) là một khoảng đóng \(\left[ {0;12} \right]\) nên \(n\) đạt cực đại tuyệt đối tại \(t = 0,t = 4,t = 8\) hoặc \(t = 12\):
\(n\left( 0 \right) = \frac{{{0^3}}}{3} - 6\left( {{0^2}} \right) + 32.0 = 0;\,\,n\left( 4 \right) = \frac{{{4^3}}}{3} - 6\left( {{4^2}} \right) + 32.4 = \frac{{160}}{3}\)
\(n\left( 8 \right) = \frac{{{8^3}}}{3} - 6\left( {{8^2}} \right) + 32.8 = \frac{{128}}{3};\,\,n\left( {12} \right) = \frac{{{{12}^3}}}{3} - 6\left( {{{12}^2}} \right) + 32.12 = \frac{{288}}{3} = 96\)
Do đó \(n\) đạt cực đại khi \(t = 12\) (năm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.