Một con cá hồi bơi ngược dòng nước để vượt một khoảng cách là \(300\;\)km. Vận tốc dòng nước là \(6\)(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\)(km/h) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c{v^3}t\) (trong đó \(c\) là hằng số dương, \(E\) được tính bằng đơn vị Jun). Cá bơ ngược dòng quãng đường \(300\;\)km trên trong khoảng thời gian \[t\] với vận tốc bằng bao nhiêu để năng lượng tiêu hao là thấp nhất?
Một con cá hồi bơi ngược dòng nước để vượt một khoảng cách là \(300\;\)km. Vận tốc dòng nước là \(6\)(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\)(km/h) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c{v^3}t\) (trong đó \(c\) là hằng số dương, \(E\) được tính bằng đơn vị Jun). Cá bơ ngược dòng quãng đường \(300\;\)km trên trong khoảng thời gian \[t\] với vận tốc bằng bao nhiêu để năng lượng tiêu hao là thấp nhất?
Quảng cáo
Trả lời:

Vận tốc khi cá bơi ngược dòng sẽ là \(v - 6\,\)(km/h).
Thời gian để bơi quãng đường \(300\;\)km là \(t = \frac{{300}}{{v - 6}}\left( h \right)\).
Năng lượng tiêu hao là \(E\left( v \right) = 300c\frac{{{v^3}}}{{v - 6}}\,\left( J \right)\).
Do \(c > 0 \Rightarrow E{\left( v \right)_{\min }} \Leftrightarrow \frac{{{v^3}}}{{v - 6}} = {\left( {f\left( v \right)} \right)_{\min }}\).
Với \(v > 6\) ta có \(f'\left( v \right) = \frac{{3{v^2}\left( {v - 6} \right) - {v^3}}}{{{{\left( {v - 6} \right)}^2}}} = \frac{{2{v^3} - 18v}}{{{{\left( {v - 6} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{v = 0}\\{v = 9.}\end{array}} \right.\)
Lập bảng biến thiên ta nhận \(v = 9\) (do \(v > 6\)).
Vậy để năng lượng tiêu hao là thấp nhất thì vận tốc là \(9\)(km/h).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi độ dài đoạn dây gấp tam giác đều là \(x\) thì độ dài đoạn dây gấp hình vuông là \(60 - x\)(mét)

Khi đó \(x = 3a \Leftrightarrow a = \frac{x}{3} \Rightarrow {S_1} = \frac{{{a^2}\sqrt 3 }}{4} = \frac{{{x^2}\sqrt 3 }}{{36}}\)
Mặt khác: \(60 - x = 4b \Rightarrow b = \frac{{60 - x}}{4} \Rightarrow {S^2} = {b^2} = {\left( {\frac{{60 - x}}{4}} \right)^2}\)
Khi đó \({S_1} + {S_2} = \frac{{{x^2}\sqrt 3 }}{{36}} + {\left( {\frac{{60 - x}}{4}} \right)^2} \Leftrightarrow f\left( x \right) = \frac{{\left( {9 + 4\sqrt 3 } \right){x^2} - 1080x + 32400}}{{144}}\)
Dễ dàng tính được \({\left( {{S_1} + {S_2}} \right)_{\min }} = \min \,f\left( x \right) = f\left( {\frac{{540}}{{9 + 4\sqrt 3 }}} \right) \approx 97,87\,\left( {{{\rm{m}}^2}} \right)\).
Lời giải
Gọi \(x\) là số lần giảm \(0,25\$ \). Cước thuê bao hàng tháng lúc này là \(40 - 0,25x\) với \(0 \le x \le 160\) (do mức cước không thể âm), và số thuê bao mới là \(1000x\).
Do đó, tổng số thuê bao là \(100000 + 1000x\).
Hàm doanh thu được cho bởi R = (số thuê bao) x (cước mỗi thuê bao trả)
\[R = \left( {100000 + 1000x} \right)\left( {40 - 0,25x} \right) = 1000\left( {100 + x} \right)\left( {40 - 0,25x} \right) = 1000\left( {4000 + 15x - 0,25{x^2}} \right)\]
Đạo hàm \(R' = 0\), ta được \(R' = 1000\left( {15 - 0,5x} \right) = 0 \Leftrightarrow x = 30.{\rm{ }}\)
Vì tập xác định của \(R\) là khoảng đóng [0; 160] nên \(R\) đạt cực đại tại \(x = 30\) hoặc tại các điểm đầu mút của đoạn [0; 160].
Ta có: \[R\left( 0 \right) = 4000000;\,\,R\left( {30} \right) = 4225000\,;\,\,R\left( {160} \right) = 0\]
Vậy doanh thu tối đa khi \(x = 30\). Điều này tương ứng với 30 lần giảm \(0,25\$ \), tức là cước thuê bao hàng tháng là \(40\$ - 7,5\$ = 32,5\$ \).
Số thuê bao tại mức cước này là \(100000 + 30.\left( {1000} \right) = 130000\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.