Câu hỏi:

09/08/2025 12 Lưu

Một công ty đánh giá rằng sẽ bán được \(N\) lô hàng nếu chi hết số tiền là \(x\) (triệu đồng) vào việc quảng cáo. Biết rằng \(N\) và \(x\) liên hệ với nhau bằng biểu thức \(N\left( x \right) =  - {x^2} + 30x + 6,0 \le x \le 30\). Hãy tìm số lô hàng lớn nhất mà công ti có thể bán sau đợt quảng cáo?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(N\left( x \right) =  - {x^2} + 30x + 6 \Rightarrow N'\left( x \right) =  - 2x + 30 \Rightarrow N'\left( x \right) = 0 \Leftrightarrow x = 15.\)

Đồng thời, ta cũng có \(\left\{ {\begin{array}{*{20}{l}}{N\left( 0 \right) = 6}\\{N\left( {15} \right) = 231}\\{N\left( {30} \right) = 6}\end{array} \Rightarrow {{\max }_{x \in [0;30]}}N\left( x \right) = 231 \Leftrightarrow x = 15.} \right.\)

Vậy nếu công ti dành 15 triệu cho việc quảng cáo thì công ti sẽ bán được nhiều nhất là 231 lô hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số lần giảm \(0,25\$ \). Cước thuê bao hàng tháng lúc này là \(40 - 0,25x\) với \(0 \le x \le 160\) (do mức cước không thể âm), và số thuê bao mới là \(1000x\).

Do đó, tổng số thuê bao là \(100000 + 1000x\).

Hàm doanh thu được cho bởi R = (số thuê bao) x (cước mỗi thuê bao trả)

\[R = \left( {100000 + 1000x} \right)\left( {40 - 0,25x} \right) = 1000\left( {100 + x} \right)\left( {40 - 0,25x} \right) = 1000\left( {4000 + 15x - 0,25{x^2}} \right)\]

Đạo hàm \(R' = 0\), ta được \(R' = 1000\left( {15 - 0,5x} \right) = 0 \Leftrightarrow x = 30.{\rm{ }}\)

Vì tập xác định của \(R\) là khoảng đóng [0; 160] nên \(R\) đạt cực đại tại \(x = 30\) hoặc tại các điểm đầu mút của đoạn [0; 160].

Ta có: \[R\left( 0 \right) = 4000000;\,\,R\left( {30} \right) = 4225000\,;\,\,R\left( {160} \right) = 0\]

Vậy doanh thu tối đa khi \(x = 30\). Điều này tương ứng với 30 lần giảm \(0,25\$ \), tức là cước thuê bao hàng tháng là \(40\$  - 7,5\$  = 32,5\$ \).

Số thuê bao tại mức cước này là \(100000 + 30.\left( {1000} \right) = 130000\).

Lời giải

Gọi độ dài đoạn dây gấp tam giác đều là \(x\) thì độ dài đoạn dây gấp hình vuông là \(60 - x\)(mét)

(Trả lời ngắn) Cắt một đoạn dây dài  thành hai đoạn dây, đoạn dây thứ nhất gấp thành một tam giác đều có diện tích s1 (ảnh 2)

Khi đó \(x = 3a \Leftrightarrow a = \frac{x}{3} \Rightarrow {S_1} = \frac{{{a^2}\sqrt 3 }}{4} = \frac{{{x^2}\sqrt 3 }}{{36}}\)

Mặt khác: \(60 - x = 4b \Rightarrow b = \frac{{60 - x}}{4} \Rightarrow {S^2} = {b^2} = {\left( {\frac{{60 - x}}{4}} \right)^2}\)

Khi đó \({S_1} + {S_2} = \frac{{{x^2}\sqrt 3 }}{{36}} + {\left( {\frac{{60 - x}}{4}} \right)^2} \Leftrightarrow f\left( x \right) = \frac{{\left( {9 + 4\sqrt 3 } \right){x^2} - 1080x + 32400}}{{144}}\)

Dễ dàng tính được \({\left( {{S_1} + {S_2}} \right)_{\min }} = \min \,f\left( x \right) = f\left( {\frac{{540}}{{9 + 4\sqrt 3 }}} \right) \approx 97,87\,\left( {{{\rm{m}}^2}} \right)\).