Câu hỏi:

19/08/2025 32 Lưu

Để chặn đường hành lang hình chữ L, người ta dùng một que sào thẳng dài đặt kín những điểm chạm với hành lang (như hình vẽ). Biết \[a = 24\] và \[b = 3\]. Hỏi cái sào thỏa mãn điều kiện trên có chiều dài tối thiểu là bao nhiêu?
Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
(Trả lời ngắn) Để chặn đường hành lang hình chữ L, người ta dùng một que sào thẳng dài đặt kín những điểm chạm với hành lang (như hình vẽ) (ảnh 1)

Đặt các điểm như hình vẽ.

Đặt \(DF = x\), \(x > 0\), ta có \(\Delta ADF\) đồng dạng với \(\Delta BED\) nên \(\frac{{EB}}{{ED}} = \frac{{AF}}{{DF}}\)\( \Rightarrow EB = \frac{{ab}}{x}\)

Gọi \[l\] là chiều dài của que sào, ta có \({l^2} = A{B^2} = {\left( {x + b} \right)^2} + {\left( {a + \frac{{ab}}{x}} \right)^2} = f\left( x \right)\).

Đạo hàm: \(f'\left( x \right) = 2\left( {x + b} \right) - 2\frac{{ab}}{{{x^2}}}\left( {a + \frac{{ab}}{x}} \right) = 2\left( {x + b} \right)\left( {1 - \frac{{{a^2}b}}{{{x^3}}}} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{{a^2}b}} = 12\).

Dễ dàng suy ra được \(\min \,f\left( x \right) = f\left( {12} \right) = 1125\)

Vậy giá trị nhỏ nhất của que sào là \(l = \sqrt {1125}  = 15\sqrt 5 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi độ dài đoạn dây gấp tam giác đều là \(x\) thì độ dài đoạn dây gấp hình vuông là \(60 - x\)(mét)

(Trả lời ngắn) Cắt một đoạn dây dài  thành hai đoạn dây, đoạn dây thứ nhất gấp thành một tam giác đều có diện tích s1 (ảnh 2)

Khi đó \(x = 3a \Leftrightarrow a = \frac{x}{3} \Rightarrow {S_1} = \frac{{{a^2}\sqrt 3 }}{4} = \frac{{{x^2}\sqrt 3 }}{{36}}\)

Mặt khác: \(60 - x = 4b \Rightarrow b = \frac{{60 - x}}{4} \Rightarrow {S^2} = {b^2} = {\left( {\frac{{60 - x}}{4}} \right)^2}\)

Khi đó \({S_1} + {S_2} = \frac{{{x^2}\sqrt 3 }}{{36}} + {\left( {\frac{{60 - x}}{4}} \right)^2} \Leftrightarrow f\left( x \right) = \frac{{\left( {9 + 4\sqrt 3 } \right){x^2} - 1080x + 32400}}{{144}}\)

Dễ dàng tính được \({\left( {{S_1} + {S_2}} \right)_{\min }} = \min \,f\left( x \right) = f\left( {\frac{{540}}{{9 + 4\sqrt 3 }}} \right) \approx 97,87\,\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Gọi \(x\) là số lần giảm \(0,25\$ \). Cước thuê bao hàng tháng lúc này là \(40 - 0,25x\) với \(0 \le x \le 160\) (do mức cước không thể âm), và số thuê bao mới là \(1000x\).

Do đó, tổng số thuê bao là \(100000 + 1000x\).

Hàm doanh thu được cho bởi R = (số thuê bao) x (cước mỗi thuê bao trả)

\[R = \left( {100000 + 1000x} \right)\left( {40 - 0,25x} \right) = 1000\left( {100 + x} \right)\left( {40 - 0,25x} \right) = 1000\left( {4000 + 15x - 0,25{x^2}} \right)\]

Đạo hàm \(R' = 0\), ta được \(R' = 1000\left( {15 - 0,5x} \right) = 0 \Leftrightarrow x = 30.{\rm{ }}\)

Vì tập xác định của \(R\) là khoảng đóng [0; 160] nên \(R\) đạt cực đại tại \(x = 30\) hoặc tại các điểm đầu mút của đoạn [0; 160].

Ta có: \[R\left( 0 \right) = 4000000;\,\,R\left( {30} \right) = 4225000\,;\,\,R\left( {160} \right) = 0\]

Vậy doanh thu tối đa khi \(x = 30\). Điều này tương ứng với 30 lần giảm \(0,25\$ \), tức là cước thuê bao hàng tháng là \(40\$  - 7,5\$  = 32,5\$ \).

Số thuê bao tại mức cước này là \(100000 + 30.\left( {1000} \right) = 130000\).