Có bao nhiêu số tự nhiên \(n\) để đa thức \(A = 20{x^7}{y^{2n}} - 10{x^4}{y^{3n}} + 7{x^5}{y^6}\) chia hết cho đơn thức \(B = {x^{n + 1}}{y^6}.\)
Quảng cáo
Trả lời:

Đáp án: 1
Ta có: \(A:B = \left( {20{x^7}{y^{2n}} - 10{x^4}{y^{3n}} + 7{x^5}{y^6}} \right):{x^{n + 1}}{y^6}\).
Để \(20{x^7}{y^{2n}}\) chia hết cho \({x^{n + 1}}{y^6}\) thì \(n + 1 \le 7\) và \(2n \ge 6\).
Suy ra \(n \le 6\) và \(n \ge 3\) hay \(3 \le n \le 6\).
Mà \(n\) là số tự nhiên nên \(n \in \left\{ {3;4;5;6} \right\}\) (1).
Để \( - 10{x^4}{y^{3n}}\) chia hết cho \({x^{n + 1}}{y^6}\) thì \(n + 1 \le 4\) và \(3n \ge 6\).
Suy ra \(n \le 3\) và \(n \ge 2\) hay \(2 \le n \le 3\).
Mà \(n\) là số tự nhiên nên \(n \in \left\{ {2;3} \right\}\) (2).
Để \(7{x^5}{y^6}\) chia hết cho \({x^{n + 1}}{y^6}\) thì \(n + 1 \le 5\) hay \(n \le 4\).
Mà \(n\) là số tự nhiên nên \(n \in \left\{ {0;1;2;3;4} \right\}\) (3).
Từ (1), (2) và (3) suy ra \(n = 3\).
Vậy có 1 giá trị \(n\) thỏa mãn.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 72
Đa thức biểu diễn quãng đường AB là: \(S = 4x + 4y\) (km).
Thay \(x = 10;y = 8\), ta được: \(S = 4.10 + 4.8 = 40 + 32 = 72\) (km).
Lời giải
Đáp án: −1,5
Ta có: \(M + 3xy - 6{x^2}y = 3xy - \left( {9{x^2}y + 5xy} \right)\)
\(M = 3xy - 9{x^2}y - 5xy - 3xy + 6{x^2}y\)
\(M = \left( {3xy - 5xy - 3xy} \right) + \left( { - 9{x^2}y + 6{x^2}y} \right)\)
\(M = - 5xy - 3{x^2}y\).
Thay \(x = \frac{2}{3},y = - \frac{3}{4}\) vào \(M = - 5xy - 3{x^2}y\), ta được:
\(M = - 5.\frac{2}{3}.\left( { - \frac{3}{4}} \right) - 3.{\left( {\frac{2}{3}} \right)^2}.\left( { - \frac{3}{4}} \right) = - \frac{5}{2} + 1 = - \frac{3}{2} = - 1,5\).
Câu 3
A. \(3x\left( {x + y} \right).\)
B. \(x\left( {x + y + 1} \right) - 3y\left( {x + y} \right) - x.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.