Câu hỏi:

27/09/2025 393 Lưu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới đây:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới đây: (ảnh 1)

a) Hàm số \(y = f\left( x \right)\) có hai điểm cực trị.

b) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {1; + \infty } \right)\).

c) \(f\left( 1 \right) > f\left( 2 \right) > f\left( 4 \right)\).

d) Trên đoạn \(\left[ { - 1;4} \right]\), giá trị lớn nhất của hàm số \(y = f\left( x \right)\) là \(f\left( 1 \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ đồ thị của hàm số \(y = f'\left( x \right)\) ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới đây: (ảnh 2)

Khi đó dựa vào bảng biến thiên ta thấy:

a) Sai. Hàm số có ba điểm cực trị.

b) Sai. Hàm số đồng biến trên các khoảng \(\left( { - 1;1} \right)\) và \(\left( {4; + \infty } \right)\).

c) Đúng. Hàm số nghịch biến trên khoảng \(\left( {1;4} \right)\)nên \(f\left( 1 \right) > f\left( 2 \right) > f\left( 4 \right)\).

d) Đúng. Trên đoạn \(\left[ { - 1;4} \right]\), giá trị lớn nhất của hàm số \(y = f\left( x \right)\) là \(f\left( 1 \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(1\).                      
B. \(0\).                    
C. \(2\).                           
D. \(3\).

Lời giải

Chọn C

Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).

Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).

Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới.   Số nghiệm thực của phương trình \(f\left( x \right) = 2\) là A. \(1\).	B. \(0\).	C. \(2\).	D. \(3\). (ảnh 2)

Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.

Câu 2

A. \(1\).                      
B. \(0\).                    
C. \( - \frac{4}{3}\).             
D. \(\frac{4}{3}\).

Lời giải

Chọn D

Ta có \(y' = \frac{{2x\left( {x + 1} \right) - {x^2}.1}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\,\,\end{array} \right.\). Loại \(x =  - 2\) vì không thuộc đoạn \(\left[ {0;2} \right]\).

\(y\left( 0 \right) = 0;\,\,y\left( 2 \right) = \frac{4}{3}\). Do đó GTLN của hàm số trên đoạn \(\left[ {0;2} \right]\) là \(\frac{4}{3}\) đạt được tại \(x = 2\).