Hai thành phố \(A\) và \(B\) cách nhau một con sông. Người ta xây dựng một cây cầu \(EF\) bắc qua sông biết rằng thành phố \(A\) cách con sông một khoảng là \(4\)km và thành phố \(B\) cách con sông một khoảng là \(6\)km (hình vẽ), biết \(HE + KF = 20\)km và độ dài \(EF\) không đổi. Hỏi xây cây cầu cách thành phố \(A\) là bao nhiêu kilomet để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường \(AEFB\))? (kết quả làm tròn đến phần chục)

Quảng cáo
Trả lời:

Đặt \[HE = {x_{}}{,_{}}FK = y\], với \[x,\,y > 0\].
Ta có: \[HE + KF = 20 \Rightarrow x + y = 20\], \[\left\{ \begin{array}{l}AE = \sqrt {16 + {x^2}} \\BF = \sqrt {36 + {y^2}} = \sqrt {36 + {{\left( {20 - x} \right)}^2}} \end{array} \right.\]
Nhận xét: Vì \[EF\] không đổi nên \[AB\] ngắn nhất khi \[AE + BF\] nhỏ nhất.
Ta có \[AE + BF\]\[ = \sqrt {{x^2} + 16} + \sqrt {{{\left( {20 - x} \right)}^2} + 36} = \sqrt {{x^2} + 16} + \sqrt {{x^2} - 40x + 436} = f\left( x \right)\]
Đạo hàm \[f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + 16} }} + \frac{{x - 20}}{{\sqrt {{x^2} - 40x + 436} }} = 0 \Rightarrow x = 8,\,\forall x \in \left( {0;20} \right)\]\[\]
Bảng biến thiên
Vậy \(AE = \sqrt {{8^2} + 16} \approx 8,94\)km.
Đáp án: 8,94.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[y' = 3a{x^2} + 2bx + c\], vì \[a \ne 0\], \[{b^2} - 3ac > 0\] nên \[y' = 0\] có hai nghiệm phân biệt \[{x_1},\,\,{x_2}\] (giả sử \[{x_1} < \,{x_2}\]). Khi đó, với cả hai trường hợp \[a > 0\] và \[a < 0\] hàm số đã cho đều có hai điểm cực trị.
Đáp án: 2.
Câu 2
Lời giải
Chọn C
Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).
Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).
Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.
Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.