Tại một cơ sở sản xuất nước tinh khiết, nhân viên phụ trách sản xuất cho biết, nếu mỗi ngày cơ sở này sản xuất \(x\,\,\left( {{m^3}} \right)\) nước tinh khiết thì phải chi phí các khoản sau: 5 triệu đồng chi phí cố định; \(0,15\) triệu đồng cho mỗi mét khối sản phẩm; \(0,0005{x^2}\)chi phí bảo dưỡng máy móc. Biết công suất tối đa mỗi ngày của cơ sở này là \(200{m^3}\). Gọi \(C\left( x \right)\) là chi phí sản xuất \(x\,\,\left( {{m^3}} \right)\) sản phẩm mỗi ngày và \(\overline c \left( x \right)\)là chi phí trung bình mỗi mét khối sản phẩm.
a) \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\).
b) Chi phí sản xuất \(100{m^3}\) nước tinh khiết là 20 triệu đồng.
c) \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\).
d) Chi phí trung bình giảm xuống khi sản lượng nước tính khiết trong ngày không vượt quá 100 \({{\rm{m}}^3}\).
Tại một cơ sở sản xuất nước tinh khiết, nhân viên phụ trách sản xuất cho biết, nếu mỗi ngày cơ sở này sản xuất \(x\,\,\left( {{m^3}} \right)\) nước tinh khiết thì phải chi phí các khoản sau: 5 triệu đồng chi phí cố định; \(0,15\) triệu đồng cho mỗi mét khối sản phẩm; \(0,0005{x^2}\)chi phí bảo dưỡng máy móc. Biết công suất tối đa mỗi ngày của cơ sở này là \(200{m^3}\). Gọi \(C\left( x \right)\) là chi phí sản xuất \(x\,\,\left( {{m^3}} \right)\) sản phẩm mỗi ngày và \(\overline c \left( x \right)\)là chi phí trung bình mỗi mét khối sản phẩm.
a) \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\).
b) Chi phí sản xuất \(100{m^3}\) nước tinh khiết là 20 triệu đồng.
c) \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\).
d) Chi phí trung bình giảm xuống khi sản lượng nước tính khiết trong ngày không vượt quá 100 \({{\rm{m}}^3}\).
Quảng cáo
Trả lời:

a) Đúng. Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).
b) Sai. Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).
c) Sai. Chi phí trung bình trên mỗi khối sản phẩm là:
\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).
d) Đúng. Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).
Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\)
Bảng biến thiên:
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị của hàm số \(y = f'\left( x \right)\) ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:
Khi đó dựa vào bảng biến thiên ta thấy:
a) Sai. Hàm số có ba điểm cực trị.
b) Sai. Hàm số đồng biến trên các khoảng \(\left( { - 1;1} \right)\) và \(\left( {4; + \infty } \right)\).
c) Đúng. Hàm số nghịch biến trên khoảng \(\left( {1;4} \right)\)nên \(f\left( 1 \right) > f\left( 2 \right) > f\left( 4 \right)\).
d) Đúng. Trên đoạn \(\left[ { - 1;4} \right]\), giá trị lớn nhất của hàm số \(y = f\left( x \right)\) là \(f\left( 1 \right)\).
Câu 2
Lời giải
Chọn C
Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).
Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).
Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.
Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.