Câu hỏi:

27/09/2025 155 Lưu

Giả sử doanh số bán hàng (đơn vị triệu đồng) của một sản phẩm mới trong vòng một số năm nhất định tuân theo quy luật logistic được mô hình hóa bằng hàm số \(f\left( t \right) = 500\left( {{t^2} + m{e^{ - t}}} \right)\), với \(t \ge 0\) là thời gian tính bằng năm kể từ khi phát hành sản phẩm mới, \(m \le 0\) là tham số. Khi đó đạo hàm \(f'\left( t \right)\) sẽ biểu thị tốc độ bán hàng. Biết rằng tốc độ bán hàng luôn tăng trong khoảng thời gian 10 năm đầu phát hành sản phẩm, khi đó giá trị nhỏ nhất của \(m\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(f'\left( t \right) = 500\left( {2t - m{e^{ - t}}} \right)\) và \[f''\left( t \right) = 500\left( {2 + m{e^{ - t}}} \right)\]

Tốc độ bán hàng luôn tăng trong khoảng thời gian 10 năm đầu phát hành sản phẩm.\( \Leftrightarrow f'\left( t \right)\). là hàm số đồng biến trên \(\left[ {0\,;\,10} \right]\) \( \Leftrightarrow f''\left( t \right) \ge 0\), \(\forall t \in \left[ {0\,;\,10} \right]\)\( \Leftrightarrow \)\[500\left( {2 + m{e^{ - t}}} \right) \ge 0\,,\,\,\forall t \in \left[ {0\,;\,10} \right]\]

\( \Leftrightarrow \)\[2 + m{e^{ - t}} \ge 0\,,\,\,\forall t \in \left[ {0\,;\,10} \right]\]\( \Leftrightarrow \)\[m{e^{ - t}} \ge  - 2\,,\,\,\forall t \in \left[ {0\,;\,10} \right]\]\( \Leftrightarrow m \ge  - 2{e^t}\,,\,\,\forall t \in \left[ {0\,;\,10} \right]\)

\( \Leftrightarrow m \ge  - 2{e^0} =  - 2\) (do hàm số \(y =  - 2{e^t}\) nghịch biến trên \(\left[ {0\,;\,10} \right]\)).

Vậy giá trị nhỏ nhất của \(m\) là \( - 2\).

Đáp án: −2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị của hàm số \(y = f'\left( x \right)\) ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới đây: (ảnh 2)

Khi đó dựa vào bảng biến thiên ta thấy:

a) Sai. Hàm số có ba điểm cực trị.

b) Sai. Hàm số đồng biến trên các khoảng \(\left( { - 1;1} \right)\) và \(\left( {4; + \infty } \right)\).

c) Đúng. Hàm số nghịch biến trên khoảng \(\left( {1;4} \right)\)nên \(f\left( 1 \right) > f\left( 2 \right) > f\left( 4 \right)\).

d) Đúng. Trên đoạn \(\left[ { - 1;4} \right]\), giá trị lớn nhất của hàm số \(y = f\left( x \right)\) là \(f\left( 1 \right)\).

Câu 2

A. \(1\).                      
B. \(0\).                    
C. \(2\).                           
D. \(3\).

Lời giải

Chọn C

Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).

Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).

Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới.   Số nghiệm thực của phương trình \(f\left( x \right) = 2\) là A. \(1\).	B. \(0\).	C. \(2\).	D. \(3\). (ảnh 2)

Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.

Câu 3

A. \(1\).                      
B. \(0\).                    
C. \( - \frac{4}{3}\).             
D. \(\frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP