Câu hỏi:

27/09/2025 5 Lưu

Đường tiệm cận đứng của đồ thị hàm số \(y = \frac{x}{{x - 1}}\)

A. \[x = 1\].               
B. \[y = 1\].              
C. \[y = 0\].                             
D. \[x = 0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{x}{{x - 1}} =  + \infty  \Rightarrow x = 1\) là đường tiệm cận đứng của đồ thị hàm số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Từ bảng biến thiên ta có: Hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x =  - 1\).

b) Đúng. Từ bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) =  + \infty \) và \(\mathop {\lim }\limits_{x \to {{( - 2)}^ - }} f(x) =  - \infty \) nên đồ thị hàm số nhận đường thẳng \(x =  - 2\) làm tiệm cận đứng.

c) Sai. Từ bảng biến thiên ta có: Hàm số nghịch biến trên khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 2; - 1} \right)\). Hàm số không xác định tại\(x =  - 2\).

d) Đúng. Từ bảng biến thiên ta có: \(f(x) = 0\) vô nghiệm nên đồ thị hàm số không có điểm chung với trục hoành.

Lời giải

a) Đúng. Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{{10}}\) (giờ)

Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{{10}} \cdot 480000 = 48000.\) (đồng).

b) Sai. Gọi \(x\)(km/h) là vận tốc của tàu, \(x > 0\)

Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{x}\) (giờ)

Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\)(nghìn đồng)

Hàm chi phí cho phần thứ hai là \(p = k{x^3}\) (nghìn đồng/ giờ)

Khi \(x = 10 \Rightarrow p = 30 \Rightarrow k = 0,03\) nên \(p = 0,03{x^3}\) (nghìn đồng/ giờ)

Do đó chi phí phần 2 để chạy \(1\)km là: \(\frac{1}{x} \cdot 0,03{x^3} = 0,03{x^2}\)(nghìn đồng)

Vậy tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).

c) Đúng. Tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).

Thay \(x = v = 30\)(km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,{03.30^2} = 43\) (nghìn đồng).

d) Đúng. \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2} = \frac{{240}}{x} + \frac{{240}}{x} + 0,03{x^2} \ge 3\sqrt[3]{{1728}} = 36.\)

Dấu “=” xảy ra khi \(x = 20\).

Câu 5

A. \(m = - 5,M = 0\).                                
B. \(m = - 1,M = 0\).                  
C. \(m = - 5,M = - 1\).                             
D. \(m = - 2,M = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP