Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f(x)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên sau:

a) Hàm số đạt cực đại tại điểm \(x = - 3\) và đạt cực tiểu tại \(x = - 1\).
b) Đồ thị hàm số nhận đường thẳng \(x = - 2\) làm tiệm cận đứng.
c) Hàm số nghịch biến trên khoảng \(\left( { - 3; - 1} \right)\).
d) Đồ thị hàm số không có điểm chung với trục hoành.
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f(x)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên sau:

a) Hàm số đạt cực đại tại điểm \(x = - 3\) và đạt cực tiểu tại \(x = - 1\).
b) Đồ thị hàm số nhận đường thẳng \(x = - 2\) làm tiệm cận đứng.
c) Hàm số nghịch biến trên khoảng \(\left( { - 3; - 1} \right)\).
d) Đồ thị hàm số không có điểm chung với trục hoành.
Quảng cáo
Trả lời:

a) Đúng. Từ bảng biến thiên ta có: Hàm số đạt cực đại tại điểm \(x = - 3\) và đạt cực tiểu tại \(x = - 1\).
b) Đúng. Từ bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) = + \infty \) và \(\mathop {\lim }\limits_{x \to {{( - 2)}^ - }} f(x) = - \infty \) nên đồ thị hàm số nhận đường thẳng \(x = - 2\) làm tiệm cận đứng.
c) Sai. Từ bảng biến thiên ta có: Hàm số nghịch biến trên khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 2; - 1} \right)\). Hàm số không xác định tại\(x = - 2\).
d) Đúng. Từ bảng biến thiên ta có: \(f(x) = 0\) vô nghiệm nên đồ thị hàm số không có điểm chung với trục hoành.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{{10}}\) (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{{10}} \cdot 480000 = 48000.\) (đồng).
b) Sai. Gọi \(x\)(km/h) là vận tốc của tàu, \(x > 0\)
Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{x}\) (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\)(nghìn đồng)
Hàm chi phí cho phần thứ hai là \(p = k{x^3}\) (nghìn đồng/ giờ)
Khi \(x = 10 \Rightarrow p = 30 \Rightarrow k = 0,03\) nên \(p = 0,03{x^3}\) (nghìn đồng/ giờ)
Do đó chi phí phần 2 để chạy \(1\)km là: \(\frac{1}{x} \cdot 0,03{x^3} = 0,03{x^2}\)(nghìn đồng)
Vậy tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).
c) Đúng. Tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).
Thay \(x = v = 30\)(km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,{03.30^2} = 43\) (nghìn đồng).
d) Đúng. \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2} = \frac{{240}}{x} + \frac{{240}}{x} + 0,03{x^2} \ge 3\sqrt[3]{{1728}} = 36.\)
Dấu “=” xảy ra khi \(x = 20\).
Lời giải
Đặt \(BC = x\,\left( m \right)\,\)với \(0 < x < 1\).
Theo đề bài ta có : \(AB.BC = 0\,,48 \Rightarrow AB = \frac{{0\,,48}}{{BC}} = \frac{{0\,,48}}{x}\).
Xét hàm số \(T = f\left( x \right) = AB + \,BC + CD = x + 2.AB = x + \frac{{0\,,96}}{x}\).
Đạo hàm \(f'\left( x \right) = 1 - \frac{{0\,,96}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 0\,,96 = 0 \Leftrightarrow x = \frac{{2\sqrt 6 }}{5} \simeq 0,98\,\left( {\rm{m}} \right)\).
Vậy chiều rộng đáy mương \(BC = 0,98\,\left( m \right)\,\)thỏa mãn yêu cầu bài toán.
Đáp án: 0,98.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.