Câu hỏi:

27/09/2025 7 Lưu

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f(x)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên sau:

Hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x =  - 1\). (ảnh 1)

a) Hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x =  - 1\).

b) Đồ thị hàm số nhận đường thẳng \(x =  - 2\) làm tiệm cận đứng.

c) Hàm số nghịch biến trên khoảng \(\left( { - 3; - 1} \right)\).

d) Đồ thị hàm số không có điểm chung với trục hoành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Từ bảng biến thiên ta có: Hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x =  - 1\).

b) Đúng. Từ bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) =  + \infty \) và \(\mathop {\lim }\limits_{x \to {{( - 2)}^ - }} f(x) =  - \infty \) nên đồ thị hàm số nhận đường thẳng \(x =  - 2\) làm tiệm cận đứng.

c) Sai. Từ bảng biến thiên ta có: Hàm số nghịch biến trên khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 2; - 1} \right)\). Hàm số không xác định tại\(x =  - 2\).

d) Đúng. Từ bảng biến thiên ta có: \(f(x) = 0\) vô nghiệm nên đồ thị hàm số không có điểm chung với trục hoành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{{10}}\) (giờ)

Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{{10}} \cdot 480000 = 48000.\) (đồng).

b) Sai. Gọi \(x\)(km/h) là vận tốc của tàu, \(x > 0\)

Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{x}\) (giờ)

Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\)(nghìn đồng)

Hàm chi phí cho phần thứ hai là \(p = k{x^3}\) (nghìn đồng/ giờ)

Khi \(x = 10 \Rightarrow p = 30 \Rightarrow k = 0,03\) nên \(p = 0,03{x^3}\) (nghìn đồng/ giờ)

Do đó chi phí phần 2 để chạy \(1\)km là: \(\frac{1}{x} \cdot 0,03{x^3} = 0,03{x^2}\)(nghìn đồng)

Vậy tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).

c) Đúng. Tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).

Thay \(x = v = 30\)(km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,{03.30^2} = 43\) (nghìn đồng).

d) Đúng. \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2} = \frac{{240}}{x} + \frac{{240}}{x} + 0,03{x^2} \ge 3\sqrt[3]{{1728}} = 36.\)

Dấu “=” xảy ra khi \(x = 20\).

Lời giải

Đặt \(BC = x\,\left( m \right)\,\)với \(0 < x < 1\).

Theo đề bài ta có : \(AB.BC = 0\,,48 \Rightarrow AB = \frac{{0\,,48}}{{BC}} = \frac{{0\,,48}}{x}\).

Xét hàm số \(T = f\left( x \right) = AB + \,BC + CD = x + 2.AB = x + \frac{{0\,,96}}{x}\).

Đạo hàm \(f'\left( x \right) = 1 - \frac{{0\,,96}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 0\,,96 = 0 \Leftrightarrow x = \frac{{2\sqrt 6 }}{5} \simeq 0,98\,\left( {\rm{m}} \right)\).

Để đảm bảo yêu cầu kỹ thuật tốt nhất cho mương, người ta cần thiết kế sao cho tổng độ dài \(T = AB + \,BC + CD\) là ngắn nhất. Khi đó chiều rộng đáy mương bằng bao nhiêu (biết chiều rộng phải dưới 1m, làm tròn kết quả đến hàng phần trăm). (ảnh 2)

Vậy chiều rộng đáy mương \(BC = 0,98\,\left( m \right)\,\)thỏa mãn yêu cầu bài toán.

Đáp án: 0,98.

Câu 4

A. \[x = 1\].               
B. \[y = 1\].              
C. \[y = 0\].                             
D. \[x = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(m = - 5,M = 0\).                                
B. \(m = - 1,M = 0\).                  
C. \(m = - 5,M = - 1\).                             
D. \(m = - 2,M = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP